Abstract

This paper reports the results of a numerical study that determined the Nusselt number for hydrodynamically and thermally fully developed, laminar, dissipative flows of pseudoplastic and dilatant fluids through circular conduits. Two boundary conditions were considered, constant heat flux and constant temperature. Constitutive equations were used that describe the entire flow curve, from the zero-shear rate through the infinite shear rate Newtonian regions, so that computed Nusselt numbers are valid for whatever shear rates may exist in the flow field. Nusselt numbers are reported as a function of a dimensionless shear rate parameter that establishes the region of the flow curve where the system is operating and are shown to be bound by the Newtonian and power law values. The conditions required for the system to perform at these asymptotic limits are quantified.

References

1.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts, A Source Book for Compact Heat Exchanger Analytical Data
, (Advances in Heat Transfer, Supplement 1),
T. F.
Irvine
, Jr.
, and
J. P.
Hartnett
, eds.,
Academic Press
,
New York
.
2.
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
, “
Non-Newtonian Fluids
,”
Handbook of Heat Transfer
,
W. M.
Rohsenow
,
J. P.
Hartnett
, and
Y. I.
Cho
, eds., 3rd ed.,
McGraw-Hill
,
New York
, pp.
10.1
10.53
.
3.
Valkó
,
P. P.
,
2005
, “
Solution to the Graetz-Brinkman Problem With the Laplace Transform Galerkin Method
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1874
1882
.10.1016/j.ijheatmasstransfer.2004.11.013
4.
Baptista
,
A.
,
Alves
,
M. A.
, and
Coelho
,
P. M.
,
2014
, “
Heat Transfer in Fully Developed Laminar Flow of Power Law Fluids
,”
ASME J. Heat Transfer.
,
136
(
4
), p. 0
41702
.10.1115/1.4025662
5.
Barletta
,
A.
,
1997
, “
Fully Developed Laminar Forced Convection in Circular Ducts for Power-Law Fluids With Viscous Dissipation
,”
Int. J. Heat Mass Transfer
,
40
(
1
), pp.
15
26
.10.1016/S0017-9310(96)00094-4
6.
Irvine
,
T. F.
, Jr.
,
Kim
,
S. C.
, and
Gui
,
F. L.
,
1988
, “
Graetz Problem Solutions for a Modified Power Law Fluid
,”
ASME, Heat Transfer Div., (Publ.) HTD
,
101
, pp.
123
127
.
7.
Dunleavy
,
J. E.
, Jr.
, and
Middleman
,
S.
,
1966
, “
Correlation of Shear Behavior of Solutions of Polyisobutylene
,”
Trans. Soc. Rheol.
,
10
(
1
), pp.
157
168
.10.1122/1.549055
8.
Capobianchi
,
M.
,
2008
, “
Pressure Drop Predictions for Laminar Flows of Extended Modified Power Law Fluids in Rectangular Ducts
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1393
1401
.10.1016/j.ijheatmasstransfer.2007.11.019
9.
Cross
,
M. M.
,
1965
, “
Rheology of Non-Newtonian Fluids: A New Flow Equation for Pseudoplastic Systems
,”
J. Colloid Sci.
,
20
(
5
), pp.
417
437
.10.1016/0095-8522(65)90022-X
10.
Chien
,
S.
,
Usami
,
S.
,
Taylor
,
H. M.
,
Lundberg
,
J. L.
, and
Gregersen
,
M. I.
,
1966
, “
Effects of Hematocrit and Plasma Proteins on Human Blood Rheology at Low Shear Rates
,”
J. Appl. Physiol.
,
21
(
1
), pp.
81
87
.10.1152/jappl.1966.21.1.81
11.
McGah
,
P. M.
, and
Capobianchi
,
M.
,
2015
, “
A Modification of Murray's Law for Shear-Thinning Rheology
,”
ASME J. Biomech. Eng.
,
137
(
5
), p.
054503
.10.1115/1.4029504
12.
Capobianchi
,
M.
, and
McGah
,
P.
,
2017
, “
Developing Region Solution for High Reynolds Number Laminar Flows of Pseudoplastic and Dilatant Fluids in Circular Ducts
,”
ASME J. Fluids Eng.
,
139
(
4
), p.
041202
.10.1115/1.4035242
13.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1980
,
Convective Heat and Mass Transfer
,
McGraw-Hill Book Company
,
New York
, pp.
88
98
.
14.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Company
,
New York
, pp.
11
153
.
You do not currently have access to this content.