Abstract

Single-phase liquid cooling in microchannels and microgaps has been successfully demonstrated for heat fluxes of ∼1 kW/cm2 for silicon chips with maximum temperature below 100 °C. However, effectively managing localized hotspots in heterogeneous integration, which refers to the integration of various components that achieve multiple functionalities, entails further thermal challenges. To address these, we use a nonuniform pin-fin array. Single phase liquid-cooling performance of four silicon test chips, thermal design vehicles (TDVs), each with a nonuniform pin-fin array, are experimentally examined. We evaluate multiple combinations of hotspot and background heat fluxes using four background heaters aligned upstream to downstream, and one additional hotspot heater located in the center. We examine the thermal performance of cylindrical fin-enhanced TDVs and hydrofoil fin-enhanced TDVs, both with two designs: one with increased fin density around the hotspot only, and another with increased fin density spanning the entire width of the channel. The resulting heat flux ratio of the localized hotspot to background heaters varies from 1 to 5. TDVs with spanwise increased hydrofoil fin density (spanwise hydrofoil) exhibit the best thermal performance with 6% to 14% lower hotspot temperature than others. TDVs with spanwise increased cylindrical fin (cylindrical spanwise) maintain a balance between hotspot cooling performance and pressure drops. In general, as the temperature of the hotspot remains around 70 °C with a heat flux of 625 W/cm2, the nonuniform fin-enhanced microgaps appears to be a promising hotspot thermal management approach. The pressure drop of hydrofoil spanwise chip is highest among all the cases.

References

1.
Tan
,
C. S.
,
Chen
,
K.
, and
Koester
,
S. J.
,
2011
,
3D Integration for VLSI Systems
,
Pan Stanford
,
Boca Raton, FL
.
2.
ITRS
,
2019
, “The International Technology Roadmap for Semiconductors 2.0” 2015 ed.,
ITRS
,
Washington DC
, accessed Dec. 4, 2020, https://www.semiconductors.org/wp-content/uploads/2018/06/0_2015-ITRS-2.0-Executive-Report-1.pdf
3.
Alfano
,
M.
,
Black
,
B.
,
Rearick
,
J.
,
Siegel
,
J.
,
Su
,
M.
, and
Din
,
J.
,
2017
, “
Unleashing Fury: A New Paradigm for 3-D Design and Test
,”
IEEE Des. Test
,
34
(
1
), pp.
8
15
.10.1109/MDAT.2016.2624284
4.
Zhang
,
X.
,
Lin
,
J. K.
,
Wickramanayaka
,
S.
,
Zhang
,
S.
,
Weerasekera
,
R.
,
Dutta
,
R.
,
Chang
,
K. F.
,
Chui
,
K.-J.
,
Li
,
H. Y.
,
Wee Ho
,
D. S.
,
Ding
,
L.
,
Katti
,
G.
,
Bhattacharya
,
S.
, and
Kwong
,
D.-L.
,
2015
, “
Heterogeneous 2.5 D Integration on Through Silicon Interposer
,”
Appl. Phys. Rev.
,
2
(
2
), p.
021308
.10.1063/1.4921463
5.
Chi
,
C. C.
,
Marinissen
,
E. J.
,
Goel
,
S. K.
, and
Wu
,
C. W.
,
2011
, “
Post-Bond Testing of 2.5 D-SICs and 3D-SICs Containing a Passive Silicon Interposer Base
,”
IEEE International Test Conference,
Anaheim, CA, Sept. 20–22, pp.
1
10
.10.1109/TEST.2011.6139181
6.
Hu
,
Y.
, and
Joshi
,
Y.
,
2019
, “
Cold Plate Pin-Fin Optimization for Multi-Die Systems Using Design of Experiment
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm),
Las Vegas, NV, May 28–31, pp.
991
995
.10.1109/ITHERM.2019.8757407
7.
Ong
,
C. L.
,
Lamaison
,
N.
,
Marcinichen
,
J. B.
, and
Thome
,
J. R.
,
2016
, “
Two-Phase Mini-Thermosyphon Electronics Cooling—Part 1: Experimental Investigation
,” 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 31–June 3, pp.
574
581
.10.1109/ITHERM.2016.7517599
8.
Khandekar
,
S.
,
Joshi
,
Y. M.
, and
Mehta
,
B.
,
2008
, “
Thermal Performance of Closed Two-Phase Thermosyphon Using Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
6
), pp.
659
667
.10.1016/j.ijthermalsci.2007.06.005
9.
Hu
,
Y.
,
Zhang
,
X.
,
Cui
,
S.
,
Ren
,
W.
,
Yu
,
L.
, and
Hu
,
X.
,
2012
, “
Bio-Mimic Transpiration Cooling Using Temperature-Sensitive Hydrogel
,”
CIESC J.
,
63
(
7
), p.
6
.10.3969/j.issn.0438-1157.2012.07.005
10.
Kimber
,
M.
, and
Garimella
,
S. V.
,
2009
, “
Measurement and Prediction of the Cooling Characteristics of a Generalized Vibrating Piezoelectric Fan
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4470
4478
.10.1016/j.ijheatmasstransfer.2009.03.055
11.
Cui
,
S.
,
Hu
,
Y.
,
Huang
,
Z.
,
Ma
,
C.
,
Yu
,
L.
, and
Hu
,
X.
,
2014
, “
Cooling Performance of Bio-Mimic Perspiration by Temperature-Sensitive Hydrogel
,”
Int. J. Therm. Sci.
,
79
(
2014
), pp.
276
282
.10.1016/j.ijthermalsci.2014.01.015
12.
Lin
,
L.
, and
Ponnappan
,
R.
,
2003
, “
Heat Transfer Characteristics of Spray Cooling in a Closed Loop
,”
Int. J. Heat Mass Transfer
,
46
(
20
), pp.
3737
3746
.10.1016/S0017-9310(03)00217-5
13.
Hu
,
Y.
,
Sarvey
,
T.
,
Bakir
,
M.
, and
Joshi
,
Y.
,
2018
, “
Design and Parametric Study of Microfluidic Cooling Manifold for 2.5 D-SICs With Dielectric Coolant
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 29–June 1, pp.
379
383
.10.1109/ITHERM.2018.8419648
14.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C. J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.10.1016/j.ijheatmasstransfer.2005.03.017
15.
Wang
,
Y.
,
Nayebzadeh
,
A.
,
Yu
,
X.
,
Shin
,
J. H.
, and
Peles
,
Y.
,
2017
, “
Local Heat Transfer in a Microchannel With a Pin Fin—Experimental Issues and Methods to Mitigate
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1191
1204
.10.1016/j.ijheatmasstransfer.2016.10.100
16.
Yang
,
D.
,
Wang
,
Y.
,
Ding
,
G.
,
Jin
,
Z.
,
Zhao
,
J.
, and
Wang
,
G.
,
2017
, “
Numerical and Experimental Analysis of Cooling Performance of Single-Phase Array Microchannel Heat Sinks With Different Pin-Fin Configurations
,”
Appl. Therm. Eng.
,
112
, pp.
1547
1556
.10.1016/j.applthermaleng.2016.08.211
17.
Sarvey
,
T. E.
,
Hu
,
Y.
,
Green
,
C. E.
,
Kottke
,
P. A.
,
Woodrum
,
D. C.
,
Joshi
,
Y. K.
,
Fedorov
,
A. G.
,
Sitaraman
,
S. K.
, and
Bakir
,
M. S.
,
2017
, “
Integrated Circuit Cooling Using Heterogeneous Micropin-Fin Arrays for Nonuniform Power Maps
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
7
(
9
), pp.
1465
1475
.10.1109/TCPMT.2017.2704525
18.
Hu
,
Y.
,
Sarvey
,
T.
,
Bakir
,
M.
, and
Joshi
,
Y.
,
2017
, “
Single Phase Liquid Cooling of Hotspots in a Heterogeneous Pin-Fin-Enhanced Microgap With Non-Uniform Fin Array
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2, pp.
500
504
.10.1109/ITHERM.2017.7992515
19.
Lorenzini
,
D.
,
Green
,
C.
,
Sarvey
,
T. E.
,
Zhang
,
X.
,
Hu
,
Y.
,
Fedorov
,
A. G.
,
Bakir
,
M. S.
, and
Joshi
,
Y.
,
2016
, “
Embedded Single Phase Microfluidic Thermal Management for Non-Uniform Heating and Hotspots Using Microgaps With Variable Pin Fin Clustering
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1359
1370
.10.1016/j.ijheatmasstransfer.2016.08.040
20.
Abdoli
,
A.
,
Jimenez
,
G.
, and
Dulikravich
,
G. S.
,
2015
, “
Thermo-Fluid Analysis of Micro Pin-Fin Array Cooling Configurations for High Heat Fluxes With a Hot Spot
,”
Int. J. Therm. Sci.
,
90
, pp.
290
297
.10.1016/j.ijthermalsci.2014.12.021
21.
Shafeie
,
H.
,
Abouali
,
O.
,
Jafarpur
,
K.
, and
Ahmadi
,
G.
,
2013
, “
Numerical Study of Heat Transfer Performance of Single-Phase Heat Sinks With Micro Pin-Fin Structures
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
68
76
.10.1016/j.applthermaleng.2013.04.008
22.
Brunschwiler
,
T.
,
Michel
,
B.
,
Rothuizen
,
H.
,
Kloter
,
U.
,
Wunderle
,
B.
,
Oppermann
,
H.
, and
Reichl
,
H.
,
2009
, “
Interlayer Cooling Potential in Vertically Integrated Packages
,”
Microsyst. Technol.
,
15
(
1
), pp.
57
74
.10.1007/s00542-008-0690-4
23.
Wan
,
Z.
,
Xiao
,
H.
,
Joshi
,
Y.
, and
Yalamanchili
,
S.
,
2014
, “
Co-Design of Multicore Architectures and Microfluidic Cooling for 3D Stacked ICs
,”
Microelectron. J.
,
45
(
12
), pp.
1814
1821
.10.1016/j.mejo.2014.04.019
24.
Serafy
,
C.
,
Yang
,
Z.
,
Srivastava
,
A.
,
Hu
,
Y.
, and
Joshi
,
Y.
,
2016
, “
Thermoelectric Codesign of 3-D CPUs and Embedded Microfluidic Pin-Fin Heatsinks
,”
IEEE Des. Test
,
33
(
2
), pp.
40
48
.10.1109/MDAT.2015.2480710
You do not currently have access to this content.