Abstract

Conjugate heat transfer problems generally require a coupled solution of the temperature fields in the fluid and solid domains. Implementing the boundary condition at the surface of the solid using a discrete Green's function (DGF) decouples the solutions. A DGF is determined first considering only the fluid domain with prescribed thermal boundary conditions, then the temperature distribution in the solid is calculated using standard numerical methods. The only compatibility requirement is that the DGF must be specified with the same discretization as the surface of the solid. The method is demonstrated for both steady-state and transient heating of a thin plate with laminar boundary layers flowing over both sides. The resulting set of linear algebraic equations for the steady-state problem or linear ordinary differential equations for the transient problem are easily solved using conventional scientific programming packages. The method converges with nearly second-order accuracy as the discretization resolution is increased.

References

1.
Moffat
,
R. J.
,
1998
, “
What's New in Convective Heat Transfer?
,”
Int. J. Heat Fluid Flow
,
19
(
2
), pp.
90
101
.10.1016/S0142-727X(97)10014-5
2.
Iaccarino
,
G.
,
Ooi
,
A.
,
Durbin
,
P. A.
, and
Behnia
,
M.
,
2002
, “
Conjugate Heat Transfer Predictions in Two-Dimensional Ribbed Passages
,”
Int. J. Heat Fluid Flow
,
23
(
3
), pp.
340
345
.10.1016/S0142-727X(02)00181-9
3.
Fedorov
,
A. G.
, and
Viskanta
,
R.
,
2000
, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
399
415
.10.1016/S0017-9310(99)00151-9
4.
Kassab
,
A.
,
Divo
,
E.
,
Heidmann
,
J.
,
Steinthorsson
,
E.
, and
Rodriguez
,
F.
,
2003
, “
BEM/FVM Conjugate Heat Transfer Analysis of a Three–Dimensional Film Cooled Turbine Blade
,”
Int. J. Numer. Methods Heat Fluid Flow
,
13
(
5
), pp.
581
610
.10.1108/09615530310482463
5.
Kopanidis
,
A.
,
Theodorakakos
,
A.
,
Gavaises
,
E.
, and
Bouris
,
D.
,
2010
, “
3D Numerical Simulation of Flow and Conjugate Heat Transfer Through a Pore Scale Model of High Porosity Open Cell Metal Foam
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2539
2550
.10.1016/j.ijheatmasstransfer.2009.12.067
6.
Luo
,
J.
, and
Razinsky
,
E. H.
,
2007
, “
Conjugate Heat Transfer Analysis of a Cooled Turbine Vane Using the V2F Turbulence Model
,”
ASME J. Turbomach.
,
129
(
4
), pp.
773
781
.10.1115/1.2720483
7.
Wang
,
J.
,
Wang
,
M.
, and
Li
,
Z.
,
2007
, “
A Lattice Boltzmann Algorithm for Fluid–Solid Conjugate Heat Transfer
,”
Int. J. Therm. Sci.
,
46
(
3
), pp.
228
234
.10.1016/j.ijthermalsci.2006.04.012
8.
Dorfman
,
A.
, and
Renner
,
Z.
,
2009
, “
Conjugate Problems in Convective Heat Transfer
,”
Math. Probl. Eng.
,
2009
, pp.
1
27
.10.1155/2009/927350
9.
Anderson
,
A. M.
,
1994
, “
Decoupling Convective and Conductive Heat Transfer Using the Adiabatic Heat Transfer Coefficient
,”
ASME J. Electron. Packaging
,
116
(
4
)12, pp.
310
316
.10.1115/1.2905703
10.
Kabir
,
H.
,
Ortega
,
A.
, and
Chan
,
C. L.
,
1995
, “
A Boundary Element Formulation of the Conjugate Heat Transfer From a Convectively Cooled Discrete Heat Source Mounted on a Conductive Substrate
,”
IEEE Trans. Compon., Packaging, Manuf. Technol.: Part A
,
18
(
1
), pp.
108
116
.10.1109/95.370743
11.
Cole
,
K.
,
1997
, “
Conjugate Heat Transfer From a Small Heated Strip
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2709
2719
.10.1016/S0017-9310(96)00232-3
12.
He
,
L.
, and
Fadl
,
M.
,
2017
, “
Multi-Scale Time Integration for Transient Conjugate Heat Transfer
,”
Int. J. Numer. Methods Fluids
,
83
(
12
), pp.
887
904
.10.1002/fld.4295
13.
Eaton
,
J. K.
,
2020
, “
The Discrete Green's Function for Convective Heat Transfer–Part 1: Definition and Physical Understanding
,”
ASME J. Heat Transfer
,
142
(
10
), p.
102101
.10.1115/1.4047515
14.
Eaton
,
J. K.
, and
Milani
,
P. M.
,
2020
, “
The Discrete Green's Function for Convective Heat Transfer–Part 2: Semi-Analytical Estimates of Boundary Layer Discrete Green's Function
,”
ASME J. Heat Transfer
,
142
(
10
), p.
102102
.10.1115/1.4047516
15.
Andreoli
,
V.
,
Cuadrado
,
D. G.
, and
Paniagua
,
G.
,
2018
, “
Prediction of the Turbine Tip Convective Heat Flux Using Discrete Green's Functions
,”
ASME J. Heat Transfer
,
140
(
7
), p.
071703
.10.1115/1.4039182
16.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw-Hill
,
New York
.
17.
Incropera
,
F. P.
,
Lavine
,
A. S.
,
Bergman
,
T. L.
, and
DeWitt
,
D. P.
,
2013
,
Principles of Heat and Mass Transfer
,
Wiley
,
New York
.
You do not currently have access to this content.