Abstract

Microorganism cells movement in the fluid is universal and affects many ecological and biological processes, including infection, reproduction, and marine life ecosystem. There are many biological and medical applications that require an understanding of the transport process in nanofluids containing a suspension of microorganism. The present problem deals with the bioconvection of Casson nanofluid containing a suspension of motile gyrotactic microorganisms over an inclined stretching sheet in the presence of thermal radiation, viscous dissipation, and chemical reaction and magnetic field. At the surface, the influence of the thermosolutal Marangoni convection and suction/injection impact are considered. The governing equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg method with shooting technique. The impact of the major pertinent parameters on the velocity, temperature, nanoparticles concentration, and density of the motile microorganism is illustrated graphically. Finally, the correlations of various crucial parameters on skin friction, local Nusselt number, Sherwood number, and local motile microorganism density number are displayed through the graphs and tables.

References

1.
Wager
,
H.
,
1911
, “
On the Effect of Gravity Upon the Movements and Aggregation of Euglena Viridis, Ehrb., and Other Micro-Organisms
,”
Philos. Trans. R. Soc. London
,
201
, pp.
333
390
.10.1098/RSTB.1911.0007
2.
Platt
,
J. R.
,
1961
, “
Bioconvection Pattern in Cultures of Free-Swimming Organism
,”
Science
,
133
(
3466
), pp.
1766
1767
.10.1126/science.133.3466.1766
3.
Pedley
,
T.
,
Hill
,
N. A.
, and
Kessler
,
J. O.
,
1988
, “
The Growth of Bioconvection Patterns in a Uniform Suspension of Gyrotactic Micro-Organisms
,”
J. Fluid Mech.
,
195
(
1
), pp.
223
338
.10.1017/S0022112088002393
4.
Dhlamini
,
M.
,
Mondal
,
H.
,
Sibanda
,
P.
, and
Motsa
,
S.
,
2020
, “
Rotational Nanofluids for Oxytactic Microorganisms With Convective Boundary Conditions Using Bivariate Spectral Quasi-Linearization Method
,”
J. Central South Univ.
,
27
(
3
), pp.
824
841
.10.1007/s11771-020-4334-x
5.
Beg
,
O. A.
,
Ferdows
,
M.
,
Karim
,
M. E.
,
Hasan
,
M. M.
,
Beg
,
T. A.
,
Shamshuddin
,
M. D.
, and
Kadir
,
A.
,
2020
, “
Computation of Non-Isothermal Thermo-Convective Micropolar Fluid Dynamics in a Hall MHD Generator System With Non-Linear Distending Wall
,”
Int. J. Appl. Comput. Math.
,
6
(
2
), p.
42
.10.1007/s40819-020-0792-y
6.
Chamkha
,
A. J.
,
Nabwey
,
H. A.
,
Abdelrahman
,
Z. M.
, and
Rashad
,
A. M.
,
2019
, “
Mixed Bioconvective Flow Over a Wedge in Porous Media Drenched With a Nanofluid
,”
J. Nanofluids
,
8
(
8
), pp.
1692
1703
.10.1166/jon.2019.1728
7.
Kuznetsov
,
A. K.
,
2012
, “
Nanofluid Bioconvection: Interaction of Microorganisms Oxytactic Upswimming, Nanoparticle Distribution, and Heating/Cooling From Below
,”
Theor. Comput. Fluid Dyn.
,
26
(
1–4
), pp.
291
310
.10.1007/s00162-011-0230-1
8.
Sudhagar
,
P.
,
Kameswaran
,
P. K.
, and
Kumar
,
B. R.
,
2019
, “
Gyrotactic Microorganism Effects on Mixed Convective Nanofluid Flow Past a Vertical Cylinder
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
4
), p.
041018
.10.1115/1.4044185
9.
Makinde
,
O. D.
, and
Animasaun
,
I. L.
,
2016
, “
Thermophoresis and Brownian Motion Effects on MHD Bioconvection of Nanofluid With Nonlinear Thermal Radiation and Quartic Chemical Reaction Past an Upper Horizontal Surface of a Paraboloid of Revolution
,”
J. Mol. Liq.
,
221
, pp.
733
743
.10.1016/j.molliq.2016.06.047
10.
Pal
,
D.
, and
Mondal
,
S. K.
,
2018
, “
Influence of Chemical Reaction and Nonlinear Thermal Radiation on Bioconvection of Nanofluid Containing Gyrotactic Microorganisms With Magnetic Field
,”
Bionano Sci.
,
8
(
4
), pp.
1065
1080
.10.1007/s12668-018-0555-y
11.
Motsa
,
S. S.
, and
Animasaun
,
I. L.
,
2016
, “
Paired Quasi-Linearization Analysis of Heat Transfer in Unsteady Mixed Convection Nanofluid Containing Both Nanoparticles and Gyrotactic Microorganisms Due to Impulsive Motion
,”
ASME J. Heat Transfer
,
138
(
11
), p.
114503
.10.1115/1.4034039
12.
Waqas
,
H.
,
Khan
,
S. U.
,
Hassan
,
M.
,
Bhatti
,
M. M.
, and
Imran
,
M.
,
2019
, “
Analysis on the Bioconvection Flow of Modified Second-Grade Nanofluid Containing Gyrotactic Microorganisms and Nanoparticles
,”
J. Mol. Liq.
,
291
, p.
111231
.10.1016/j.molliq.2019.111231
13.
Khan
,
S. U.
,
Bhatti
,
M. M.
, and
Riaz
,
A.
,
2020
, “
A Revised Viscoelastic Micropolar Nanofluid Model With Motile Microorganism and Variable Thermal Conductivity
,”
Heat Transfer
,
49
(
6
), pp.
3726
3741
.10.1002/htj.21797
14.
Al-Khaled
,
K.
,
Khan
,
S. U.
, and
Khan
,
I.
,
2020
, “
Chemically Reactive Bioconvection Flow of Tangent Hyperbolic Nanoliquid With Gyrotactic Microorganisms and Nonlinear Thermal Radiation
,”
Heliyon
,
6
(
1
), p.
e03117
.10.1016/j.heliyon.2019.e03117
15.
Al-Mdallal
,
Q. M.
,
Indumathi
,
N.
,
Ganga
,
B.
, and
Abdul Hakeem
,
A. K.
,
2020
, “
Marangoni Radiative Effects of Hybridnanofluids Flow Past a Permeable Surface With Inclined Magnetic Field
,”
Case Stud. Therm. Eng.
,
17
, p.
100571
.10.1016/j.csite.2019.100571
16.
Sastry
,
D. R. V. S. R. K.
,
Kameswaran
,
P. K.
,
Sibanda
,
P.
, and
Sudhagar
,
P.
,
2019
, “
Soret and Dufour Effects on Hydromagnetic Marangoni Convection Boundary Layer Nanofluid Flow Past a Flat Plate
,”
Applied Mathematics and Scientific Computing. Trends in Mathematics
, Birkhäuser, Cham, Swizerland, pp.
439
449
.10.1007/978-3-030-01123-9_43
17.
Hayat
,
T.
,
Shaheen
,
U.
,
Shafiq
,
A.
,
Alsaedi
,
A.
, and
Asghar
,
S.
,
2015
, “
Marangoni Mixed Conevection Flow With Joule Heating and Nonlinear Radiation
,”
AIP Adv.
,
5
(
7
), p.
077140
.10.1063/1.4927209
18.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2017
, “
Analytical Investigation for Lorentz Forces Effect on Nanofluid Marangoni Boundary Layer Hydrothermal Behavior Using HAM
,”
Indian J. Phys.
,
91
(
12
), pp.
1581
1587
.10.1007/s12648-017-1054-7
19.
Lin
,
Y.
,
Li
,
B.
,
Zheng
,
L.
, and
Chen
,
G.
,
2016
, “
Particle Shape and Radiation Effects on Marangoni Boundary Layer Flow and Heat Transfer of Copper-Water Nanofluid Driven by an Exponential Temperature
,”
Powder Technol.
,
301
, pp.
379
386
.10.1016/j.powtec.2016.06.029
20.
Makinde
,
O. D.
, and
Animasaun
,
L.
,
2016
, “
Bioconvection in MHD Nanofluid Flow With Nonlinear Thermal Radiation and Quartic Autocatalysis Chemical Reaction Past an Upper Surface of a Paraboloid of Revolution
,”
Int. J. Therm. Sci.
,
109
, pp.
159
171
.10.1016/j.ijthermalsci.2016.06.003
21.
Waqas
,
H.
,
Khan
,
S. U.
,
Bhatti
,
M. M.
, and
Imran
,
M.
,
2020
, “
Signifcance of Bioconvection in Chemical Reactive Flow of Magnetized Carreau–Yasuda Nanofuid With Thermal Radiation and Second-Order Slip
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1293
1306
.10.1007/s10973-020-09462-9
22.
Balla
,
C. S.
,
Alluguvelli
,
R.
,
Naikoti
,
K.
, and
Makinde
,
D.
,
2020
, “
Effect of Chemical Reaction on Bioconvective Flow in Oxytactic Microorganisms Suspended Porous Cavity
,”
J. Appl. Comput. Mech.
,
6
, pp.
653
664
.10.22055/JACM.2019.14811
23.
Nayak
,
M. K.
,
Prakash
,
J.
,
Tripathi
,
D.
,
Pandey
,
V. S.
,
Shaw
,
S.
, and
Makinde
,
O. D.
,
2020
, “
3D Bioconvective Multiple Slip Flow of Chemically Reactive Casson Nanofluid With Gyrotactic Micro‐Organisms
,”
Heat Transfer—Asian Res.
,
49
(
1
), pp.
135
153
.10.1002/htj.21603
24.
Oyelakin
,
I. S.
,
Mondal
,
S.
, and
Sibanda
,
P.
,
2019
, “
Nonlinear Radiation in Bioconvective Casson Nanofluid Flow
,”
Int. J. Appl. Comput. Math.
,
5
(
5
), p.
124
.10.1007/s40819-019-0705-0
25.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
26.
Sarkar
,
A. K.
,
Georgiou
,
G.
, and
Sharma
,
M. M.
,
1994
, “
Transport of Bacteria in Porous Media: I. An Experimental Investigation
,”
Biotech. Bioeng.
,
44
(
4
), pp.
489
497
.10.1002/bit.260440412
27.
Al-Mudhaf
,
A.
, and
Chamkha
,
A. J.
,
2005
, “
Similarity Solutions for MHD Thermosolutal Marangoni Convection Over a Flat Surface in the Presence of Heat Generation or Absorption Effects
,”
Heat Mass Transfer
,
42
(
2
), pp.
112
121
.10.1007/s00231-004-0611-8
28.
Kuznetsov
,
A. V.
,
2010
, “
The Onset of Nanofluid Bioconvection in a Suspension Containing Both Nanoparticles and Gyrotactic Microorganisms
,”
Int. Commun. Heat Mass Transfer
,
37
(
10
), pp.
1421
1425
.10.1016/j.icheatmasstransfer.2010.08.015
29.
Khan
,
W. A.
, and
Makinde
,
O. D.
,
2014
, “
MHD Nanofluid Bioconvection Due to Gyrotactic Microorganisms Over a Convectively Heat Stretching Sheet
,”
Int. J. Therm. Sci.
,
81
, pp.
118
124
.10.1016/j.ijthermalsci.2014.03.009
30.
Magyari
,
E.
, and
Chamkha
,
A. J.
,
2008
, “
Exact Analytical Result for the Thermosolutal MHD Marangoni Boundary Layer
,”
Int. J. Therm. Sci.
,
47
(
7
), pp.
848
857
.10.1016/j.ijthermalsci.2007.07.004
31.
Rehman
,
K. U.
,
Khan
,
A. A.
,
Malik
,
M. Y.
, and
Ali
,
U.
,
2017
, “
Mutual Effects of Stratification and Mixed Convection on Williamson Fluid Flow Under Stagnation Region Towards an Inclined Cylindrical Surface
,”
MethodsX
,
4
, pp.
429
444
.10.1016/j.mex.2017.10.007
32.
Hill
,
N. A.
, and
Pedley
,
T. J.
,
2005
, “
Bioconvection
,”
Fluid Dyn. Res.
,
37
(
1–2
), pp.
1
20
.10.1016/j.fluiddyn.2005.03.002
33.
Sajjad
,
W.
,
Zheng
,
G.
,
Din
,
G.
,
Ma
,
X.
,
Rafiq
,
M.
, and
Xu
,
W.
,
2019
, “
Metals Extraction From Sulfide Ores With Microorganisms: The Bioleaching Technology and Recent Developments
,”
Trans. Indian Inst. Met.
,
72
(
3
), pp.
559
579
.10.1007/s12666-018-1516-4
34.
Fariq
,
A.
,
Khan
,
T.
, and
Yasmin
,
A.
,
2017
, “
Microbial Synthesis of Nanoparticles and Their Potential Applications in Biomedicine
,”
J. Appl. Biomed.
,
15
(
4
), pp.
241
248
.10.1016/j.jab.2017.03.004
35.
Singh
,
P.
,
Kim
,
Y.-J.
,
Zhang
,
D.
, and
Yang
,
D.-C.
,
2016
, “
Biological Synthesis of Nanoparticles From Plants and Microorganisms
,”
Trends Biotechnol.
,
34
(
7
), pp.
588
599
.10.1016/j.tibtech.2016.02.006
36.
Gurunathan
,
S.
,
Kalishwaralal
,
K.
,
Vaidyanathan
,
R.
,
Deepak
,
V.
,
Pandian
,
S. R. K.
,
Muniyandi
,
J.
,
Hariharan
,
N.
, and
Eom
,
S. H.
,
2009
, “
Biosynthesis, Purification and Characterization of Silver Nanoparticles Using Escherichia coli
,”
Colloids Surf. B Biointerfaces
,
74
(
1
), pp.
328
335
.10.1016/j.colsurfb.2009.07.048
37.
Uddin
,
M. J.
,
Khan
,
W. A.
,
Ismail
,
I. M.
, and
Beg
,
O. A.
,
2016
, “
Computational Study of Three-Dimensional Stagnation Point Nanofluid Bioconvection Flow on a Moving Surface With Anisotropic Slip and Thermal Jump Effect
,”
ASME J. Heat Transfer
,
138
(
10
), p.
104502
.10.1115/1.4033581
38.
Zaimi
,
K.
,
Ishak
,
A.
, and
Pop
,
I.
,
2014
, “
Stagnation-Point Flow Toward a Stretching/Shrinking Sheet in a Nanofluid Containing Both Nanoparticles and Gyrotactic Microorganisms
,”
ASME J. Heat Transfer
,
136
(
4
), p.
041705
.10.1115/1.4026011
You do not currently have access to this content.