Abstract

The plate fin heat exchangers usually have either rectangular or triangular shaped flow passage. In comparison to triangular flow passage, rectangular flow passage gives comparatively higher heat transfer at the cost of higher pumping power. In the present investigation, flow passage is modified by rounding the corner of triangular passage to investigate the heat and flow characteristics of air flowing through it. Comparison of performance between modified and rectangular flow passage has also been presented and discussed. The radius of curvature of the rounded corner has been kept constant with value of 0.49 times duct height (H). The dimple was also fabricated at the inner side of the flow passage and arranged in rectangular array. Distance between them was defined by two different dimensionless parameters, relative transverse width (x/h), and relative streamwise length (z/h), whereas, dimensionless height of the protrusion is defined by relative dimple height (h/D). Noticeable increment in both heat transfer and friction factor has been observed by modifying the duct corners and 2.98 times increment in Nusselt number resulted due to dimples in modified duct for h/D, x/h, and y/h value of 0.44, 10, and 10, respectively, in comparison to smooth duct at Reynolds number of 19,500. For similar combination of roughness parameters, highest frictional penalty was estimated with value of 4.46 times that of the smooth duct at Reynolds number of 4400. Additionally, the comparative assessment of heat transfer enhancement (Nuenh), frictional penalty (fpenalty), and thermohydraulic performance index (THPi) has also been carried out to understand the suitability of round cornered duct. In comparison to protruded rectangular duct, 28% higher THPi is obtained in modified duct under similar conditions.

References

1.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
, 1st ed.,
Academic Press
,
London
.
2.
Braga
,
S. L.
, and
Saboya
,
F. E. M.
,
1996
, “
Turbulent Heat Transfer and Pressure Drop in an Internally Finned Equilateral Triangular Duct
,”
Exp. Therm. Fluid Sci.
,
12
(
1
), pp.
57
64
.10.1016/0894-1777(95)00069-0
3.
Zhang
,
L. Z.
,
2005
, “
Turbulent Three-Dimensional Air Flow and Heat Transfer in a Cross-Corrugated Triangular Duct
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1151
1158
.10.1115/1.2035110
4.
Garoosi
,
F.
,
Hoseininejad
,
F.
, and
Rashidi
,
M. M.
,
2016
, “
Numerical Study of Natural Convection Heat Transfer in a Heat Exchanger Filled With Nanofluids
,”
Energy
,
109
, pp.
664
678
.10.1016/j.energy.2016.05.051
5.
Garoosi
,
F.
,
Hoseininejad
,
F.
, and
Rashidi
,
M. M.
,
2016
, “
Numerical Study of Heat Transfer Performance of Nanofluids in a Heat Exchanger
,”
Appl. Therm. Eng.
,
105
, pp.
436
455
.10.1016/j.applthermaleng.2016.03.015
6.
Rashidi
,
M. M.
,
Nasiri
,
M.
,
Shadloo
,
M. S.
, and
Yang
,
Z.
,
2017
, “
Entropy Generation in a Circular Tube Heat Exchanger Using Nanofluids: Effects of Different Modeling Approaches
,”
Heat Transfer Eng.
,
38
(
9
), pp.
853
866
.10.1080/01457632.2016.1211916
7.
Balaras
,
C. A.
,
1990
, “
A Review of Augmentation Techniques for Heat Transfers Surfaces in Single-Phase Heat Exchangers
,”
Energy
,
15
(
10
), pp.
899
906
.10.1016/0360-5442(90)90071-9
8.
Yadav
,
A. S.
, and
Thapak
,
M. K.
,
2016
, “
Artificially Roughened Solar Air Heater: A Comparative Study
,”
Int. J. Green Energy
,
13
(
2
), pp.
143
172
.10.1080/15435075.2014.917419
9.
Kumar
,
R.
,
Goel
,
V.
, and
Kumar
,
A.
,
2016
, “
Thermal and Fluid Dynamic Characteristic of Flow Through Triangular Cross-Sectional Duct: A Review
,”
Renewable Sustainable Energy Rev.
,
61
, pp.
123
140
.10.1016/j.rser.2016.03.011
10.
Kumar
,
R.
,
Kumar
,
A.
, and
Goel
,
V.
,
2019
, “
Performance Improvement and Development of Correlation for Friction Factor and Heat Transfer Using Computational Fluid Dynamics for Ribbed Triangular Duct Solar Air Heater
,”
Renewable Energy
,
131
, pp.
788
799
.10.1016/j.renene.2018.07.078
11.
Kumar
,
R.
,
Goel
,
V.
, and
Kumar
,
A.
,
2018
, “
Investigation of Heat Transfer Augmentation and Friction Factor in Triangular Duct Solar Air Heater Due to Forward Facing Chamfered Rectangular Ribs: A CFD Based Analysis
,”
Renewable Energy
,
115
, pp.
824
835
.10.1016/j.renene.2017.09.010
12.
Gill
,
R. S.
,
Hans
,
V. S.
, and
Singh
,
S.
,
2017
, “
Investigations on Thermo-Hydraulic Performance of Broken Arc Rib in a Rectangular Duct of Solar Air Heater
,”
Int. Commun. Heat Mass Transfer
,
88
, pp.
20
27.
10.1016/j.icheatmasstransfer.2017.07.024
13.
Promvonge
,
P.
,
Khanoknaiyakarn
,
C.
,
Kwankaomeng
,
S.
, and
Thianpong
,
C.
,
2011
, “
Thermal Behavior in Solar Air Heater Channel Fitted With Combined Rib and Delta-Winglet
,”
Int. Commun. Heat Mass Transfer
,
38
(
6
), pp.
749
756
.10.1016/j.icheatmasstransfer.2011.03.014
14.
Kumar
,
R.
,
Kumar
,
A.
, and
Goel
,
V.
,
2017
, “
A Parametric Analysis of Rectangular Rib Roughened Triangular Duct Solar Air Heater Using Computational Fluid Dynamics
,”
Sol. Energy
,
157
, pp.
1095
1107
.10.1016/j.solener.2017.08.071
15.
Goel
,
V.
,
Guleria
,
P.
, and
Kumar
,
R.
,
2017
, “
Effect of Apex Angle Variation on Thermal and Hydraulic Performance of Roughened Triangular Duct
,”
Int. Commun. Heat Mass Transfer
,
86
, pp.
239
244
.10.1016/j.icheatmasstransfer.2017.06.008
16.
Skullong
,
S.
,
Kwankaomeng
,
S.
,
Thianpong
,
C.
, and
Promvonge
,
P.
,
2014
, “
Thermal Performance of Turbulent Flow in a Solar Air Heater Channel With Rib-Groove Turbulators
,”
Int. Commun. Heat Mass Transfer
,
50
, pp.
34
43
.10.1016/j.icheatmasstransfer.2013.11.001
17.
Kumar
,
R.
, and
Kumar
,
A.
,
2017
, “
Computational Fluid Dynamics Based Study for Analyzing Heat Transfer and Friction Factor in Semi-Circular Rib-Roughened Equilateral Triangular Duct
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
4
), pp.
941
957
.10.1108/HFF-10-2015-0438
18.
Kumar
,
R.
,
Goel
,
V.
, and
Kumar
,
A.
,
2017
, “
Experimental and Computational Fluid Dynamics Study on Fluid Flow and Heat Transfer in Triangular Passage Solar Air Heater of Different Configurations
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041013
. 10.1115/1.4036775
19.
Kumar
,
R.
,
Kumar
,
A.
, and
Goel
,
V.
,
2019
, “
Simulation of Flow and Heat Transfer in Triangular Cross-Sectional Solar Assisted Air Heater
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011007
.10.1115/1.4041098
20.
Chyu
,
M.
,
Yu
,
K.
,
Ding
,
Y. H.
,
Downs
,
J.
, and
Soechting
,
P. F.
,
1977
, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,”
ASME
Paper No. 97-GT-437.10.1115/97-GT-437
21.
Mohmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(
1
), pp.
115
123
.10.1115/1.1333694
22.
Hwang
,
S. D.
,
Kwon
,
H. G.
, and
Cho
,
H. H.
,
2008
, “
Heat Transfer With Dimple/Protrusion Arrays in Rectangular Duct With Low Reynolds Number Range
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
916
926
.10.1016/j.ijheatfluidflow.2008.01.004
23.
Hwang
,
S. D.
,
Kwon
,
H. G.
, and
Cho
,
H. H.
,
2010
, “
Local Heat Transfer and Thermal Performance on Periodically Dimple-Protrusion Patterned Walls for Compact Heat Exchangers
,”
Energy
,
35
(
12
), pp.
5357
5364
.10.1016/j.energy.2010.07.022
24.
Lee
,
J.
, and
Lee
,
K. S.
,
2013
, “
Correlations and Shape Optimization in a Channel With Aligned Dimples and Protrusions
,”
Int. J. Heat Mass Transfer
,
64
, pp.
444
451
.10.1016/j.ijheatmasstransfer.2013.04.055
25.
Saini
,
R. P.
, and
Verma
,
J.
,
2008
, “
Heat Transfer and Friction Factor Correlations for a Duct Having Dimple-Shape Artificial Roughness for Solar Air Heaters
,”
Energy
,
33
(
8
), pp.
1277
1287
.10.1016/j.energy.2008.02.017
26.
Bhushan
,
B.
, and
Singh
,
R.
,
2011
, “
Nusselt Number and Friction Factor Correlations for Solar Air Heater Duct Having Artificially Roughened Absorber Plate
,”
Sol. Energy
,
85
(
5
), pp.
1109
1118
.10.1016/j.solener.2011.03.007
27.
Shui-Lian
,
L.
,
Xiang-Rui
,
M.
, and
Xin-Li
,
W.
,
2015
, “
Heat Transfer and Friction Factor Correlations for Solar Air Collectors With Hemispherical Protrusion Artificial Roughness on the Absorber Plate
,”
Sol. Energy
,
118
, pp.
460
468
.10.1016/j.solener.2015.05.047
28.
Kim
,
J. E.
,
Doo
,
J. H.
,
Ha
,
M. Y.
,
Yoon
,
H. S.
, and
Son
,
C.
,
2012
, “
Numerical Study on Characteristics of Flow and Heat Transfer in a Cooling Passage With Protrusion-in-Dimple Surface
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
7257
7267
.10.1016/j.ijheatmasstransfer.2012.07.052
29.
Chen
,
Y.
,
Chew
,
Y. T.
, and
Khoo
,
B. C.
,
2014
, “
Heat Transfer and Flow Structure on Periodically Simple-Protrusion Patterned Walls in Turbulent Channels Flow
,”
Int. J. Heat Mass Transfer
,
78
, pp.
871
882
.10.1016/j.ijheatmasstransfer.2014.07.036
30.
Zhang
,
F.
,
Wang
,
X.
, and
Li
,
J.
,
2017
, “
Flow and Heat Transfer Characteristics in Rectangular Channels Using Combination of Convex-Dimples With Grooves
,”
Appl. Therm. Eng.
,
113
, pp.
926
936
.10.1016/j.applthermaleng.2016.11.047
31.
Acharya
,
S.
, and
Zhou
,
F.
,
2012
, “
Experimental and Computational Study of Heat/Mass Transfer and Flow Structure for Four Dimple Shaped in a Square Internal Passage
,”
ASME J. Turbomach.
,
134
(
6
), p.
061028
.10.1115/1.4006315
32.
Kumar
,
R.
,
Kumar
,
A.
, and
Goel
,
V.
,
2018
, “
Effect of Rounded Corners on the Heat Transfer and Fluid Flow Through Triangular Duct
,”
ASME J. Heat Transfer
,
140
(
12
), p.
121701
.10.1115/1.4040957
33.
Kumar
,
R.
,
Khurana
,
S.
,
Kumar
,
A.
, and
Goel
,
V.
,
2019
, “
Effect of Dimple Intrusions and Curvature Radius of Rounded Corner Triangular Duct on Fluid Flow and Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031001
.10.1115/1.4041683
34.
Standard ASHRAE,
1977
, "Methods of Testing to Determine the Thermal Performance of Solar Collectors," American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA, pp.
93
77
.
35.
Incropera, F. P., Lavine, A. S., Bergman, T. L., and DeWitt, D. P., 2007,
Fundamentals of Heat and Mass Transfer,
6th ed.,
John Wiley & Sons, United States of America.
36.
Kline
,
S. J.
, and
McClintock
,
F. P.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
37.
Animasaun
,
I. L.
,
Makinde
,
O. D.
, and
Saleem
,
S.
,
2019
, “
Mixed Convection Flow of Newtonian Fluids Over an Upper Horizontal Thermally Stratified Melting Surface of a Paraboloid of Revolution
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
4
), p.
197
. 10.1007/s40430-019-1698-7
38.
Animasaun
,
I. L.
,
Ibraheem
,
R. O.
,
Mahanthesh
,
B.
, and
Babatunde
,
H. A.
,
2019
, “
A Meta-Analysis on the Effects of Haphazard Motion of Tiny/Nano-Sized Particles on the Dynamics and Other Physical Properties of Some Fluids
,”
Chin. J. Phys.
,
60
, pp.
676
687
.10.1016/j.cjph.2019.06.007
39.
Sethi
,
M.
,
Goel
,
V.
, and
Thakur
,
N. S.
,
2012
, “
Correlation for Solar Air Heater Duct With Dimpled Shape Roughness Elements on Absorber Plate
,”
Sol. Energy
,
86
(
9
), pp.
2852
2861
.10.1016/j.solener.2012.06.024
You do not currently have access to this content.