Abstract

Direct contact membrane distillation (DCMD) is a process that has shown promise within the field of desalination due to its less energy intensive methods and widespread applications. DCMD is a thermally driven microfiltration separation process that operates on the principle of vapor–liquid equilibrium conditions where heat and mass transfer occur simultaneously. Fundamentally, DCMD is based on a porous hydrophobic membrane separating the hot solution (feed) from the cold solution (permeate) where desalinated water condenses. The membrane interfacial temperatures determine the vapor pressure difference across the membrane. In this work, a direct simulation Monte Carlo analysis is employed to investigate how the exergy of the system relates to some key thermal properties, namely, the temperature polarization coefficient (TPC) and the thermal efficiency (TE), as other parameters are changed, such as feed temperature, flow speed, and membrane porosity. Through molecular simulation, phase equilibrium is reached by calculating the chemical potential at the membrane interface and the entropy of the system is found. Since exergy is a function of entropy, enthalpy, and temperature, the amount of useful work is calculated. Finally, exergy is compared to the TPC and TE as the flowrate and porosity are varied. We demonstrate that with these exergy calculations, the information about the thermal relationship between microscopic and macroscopic parameters will improve future experimental work.

References

1.
Boumphrey
,
S.
,
2018
, “
What Drives Demand for Natural Resources?
,” Market Research Blog, accessed Feb. 22 2018, https://blog.euromonitor.com/what-drives-demand-natural-resources/
2.
Mekonnen
,
M. M.
, and
Hoekstra
,
A. Y.
,
2016
, “
Four Billion People Facing Severe Water Scarcity
,”
Sci. Adv.
,
2
(2)
, p.
e1500323
.10.1126/sciadv.1500323
3.
Perlman
,
H.
,
2018
, “
Water Q&A: What is Most of the Freshwater in the U.S. Used for?
,” U.S. Geological Survey, https://www.usgs.gov/special-topic/water-science-school/science/water-qa-what-most-freshwater-us-used?qt-science_center_objects=0#qt-science_center_objects
4.
Al-Obaidani
,
S.
,
Curcio
,
E.
,
Macedonio
,
F.
,
Di Profio
,
G.
,
Al-Hinai
,
H.
, and
Drioli
,
E.
,
2008
, “
Potential of Membrane Distillation in Seawater Desalination: Thermal Efficiency, Sensitivity Study and Cost Estimation
,”
J. Membr. Sci.
,
323
(
1
), pp.
85
98
.10.1016/j.memsci.2008.06.006
5.
Su
,
C.
,
Chang
,
J.
,
Tang
,
K.
,
Gao
,
F.
,
Li
,
Y.
, and
Cao
,
H.
,
2017
, “
Novel Three-Dimensional Superhydrophobic Strength-Enhanced Electrospun Membranes Long-Term Membrane Distillation
,”
Sep. Purif. Technol.
,
178
, pp.
279
287
.10.1016/j.seppur.2017.01.050
6.
 
Deshmukh
,
A.
, and
Elimelech
,
M.
,
2017
, “
Understanding the Impact of Membrane Properties and Transport Phenomena on the Energetic Performance of Membrane Distillation Desalination
,”
J. Membrane Sci.
,
539
, pp.
458
474
.10.1016/j.memsci.2017.05.017
7.
Lawson
,
K. W.
, and
Lloyd
,
D. R.
,
1997
, “
Membrane Distillation
,”
Membr. Distill.: Rev.
,
124
(
1
), pp.
1
25
.10.1016/S0376-7388(96)00236-0
8.
El-Bourawi
,
M. S.
,
Ding
,
Z.
,
Ma
,
R.
, and
Khayet
,
M.
,
2006
, “
A Framework for Better Understanding Membrane Distillation Separation Process
,”
J. Membr. Sci.
,
285
(
1–2
), pp.
4
29
.10.1016/j.memsci.2006.08.002
9.
Schofield
,
R. W.
, 1989, “
Membrane Distillation
,” Ph.D. thesis, The School of Chemical Engineering and Industrial Chemistry, The University of New South Wales, Kensington, Australia.
10.
Dong
,
G.
,
Kim
,
J. F.
,
Hoon
,
J.
,
Drioli
,
E.
, and
Moo
,
Y.
,
2017
, “
Open-Source Predictive Simulators for Scale-Up of Direct Contact Membrane Distillation Modules for Seawater Desalination
,”
Desalination
,
402
, pp.
72
87
.10.1016/j.desal.2016.08.025
11.
Eleiwi
,
F.
,
Ghaffour
,
N.
,
Alsaadi
,
A. S.
,
Francis
,
L.
, and
Laleg-Kirati
,
T. M.
,
2016
, “
Dynamic Modeling and Experimental Validation for Direct Contact Membrane Distillation (DCMD) Process
,”
Desalination
,
384
, pp.
1
11
.10.1016/j.desal.2016.01.004
12.
Phattaranawik
,
J.
, and
Jiraratananon
,
R.
,
2001
, “
Direct Contact Membrane Distillation: Effect Mass Transfer Heat Transfer
,”
J. Membr. Sci.
,
188
, pp.
137
143
.10.1016/S0376-7388(01)00361-1
13.
Martínez-Díez
,
L.
,
Vázquez-González
,
M. I.
, and
Florido-Díaz
,
F. J.
,
1998
, “
Temperature Polarization Coefficients in Membrane Distillation
,”
Sep. Sci. Technol.
, 33(
6
), pp.
787
799
.10.1080/01496399808544876
14.
Khayet
,
T.
, and
Matsuura
,
M.
,
2011
,
Membrane Distillation: Principles and Applications
,
Elsevier Science
, Amsterdam, The Netherlands.
15.
Gryta
,
M.
, and
Tomaszewska
,
M.
,
1998
, “
Heat Transport in the Membrane Distillation Process
,”
J. Membr. Sci.
,144(
1-2
), pp.
211
222
.10.1016/S0376-7388(98)00050-7
16.
Ali
,
A.
,
Macedonio
,
F.
,
Drioli
,
E.
,
Aljlil
,
S.
, and
Alharbi
,
O. A.
,
2013
, “
Experimental and Theoretical Evaluation of Temperature Polarization Phenomenon in Direct Contact Membrane Distillation
,”
Chem. Eng. Res. Des.
,
91
(
10
), pp.
1966
1977
.10.1016/j.cherd.2013.06.030
17.
Imdakm
,
A. O.
, and
Matsuura
,
T.
,
2005
, “
Simulation of Heat Mass Transfer in Direct Contact Membrane Distillation (MD): The Effect Membrane Physical Properties
,”
J. Membr. Sci.
,
262
, pp.
117
128
.10.1016/j.memsci.2005.05.026
18.
Present
,
R. D.
,
1958
,
Kinetic Theory of Gases
,
McGraw-Hill
, New York.
19.
Khayet
,
M.
,
2011
, “
Membranes and Theoretical Modeling of Membrane Distillation: A Review
,”
Adv. Colloid Interface Sci.
,
164
(
1–2
), pp.
56
88
.10.1016/j.cis.2010.09.005
20.
Imdakm
,
A. O.
, and
Matsuura
,
T.
,
2004
, “
A Monte Carlo Simulation Model Membrane Distillation Processes: Direct Contact (MD)
,”
J. Membr. Sci.
,
237
, pp.
51
59
.10.1016/j.memsci.2004.03.005
21.
Zhang
,
J.
,
Gray
,
S.
, and
Li
,
J.-D.
,
2012
, “
Modelling Heat and Mass Transfers in DCMD Using Compressible Membranes
,”
J. Membr. Sci.
,
387–388
, pp.
7
16
.10.1016/j.memsci.2011.08.034
22.
Camacho
,
L. M.
,
Dumée
,
L.
,
Zhang
,
J.
,
Li
,
J.-D.
, and
Duke
,
M.
,
2013
, “
Advances in Membrane Distillation for Water Desalination and Purification Applications
,”
Water
,
5
(
1
), pp.
94
196
.10.3390/w5010094
23.
Brebbia
,
A. J.
, and
Ferrante
,
C. A.
,
1983
,
Computational Hydraulics
,
Butterworths
,
London
.
24.
Widom
,
B.
,
1982
, “
Potential-Distribution Theory and the Statistical Mechanics of Fluids
,”
J. Phys. Chem.
, 86(
6
), pp.
869
872
.10.1021/j100395a005
25.
Chen
,
T. C.
,
Ho
,
C. D.
, and
Yeh
,
H. M.
,
2009
, “
Theoretical Modeling and Experimental Analysis of Direct Contact Membrane Distillation
,”
J. Membr. Sci.
,
330
(
1–2
), pp.
279
287
.10.1016/j.memsci.2008.12.063
You do not currently have access to this content.