Abstract

Metal foams have been widely used in many fields requiring excellent heat and mass transfer performance such as heat exchangers and catalytic reactors. However, the movements of gas–solid interfacial heat transfer characteristic curve with the structural parameters of foams for uncoated metal foams and the washcoat thickness for coated metal foams are not explained in depth. In this work, gas–solid interfacial heat transfer characteristics of metal foams without and with a washcoat were studied in detail in both laminar and turbulent flows using the body-centered-cubic (BCC) unit cell model by the method of computational fluid dynamics, considering that the structural parameters of uncoated/coated foams could be accurately controlled in the numerical method. The movements of gas–solid interfacial heat transfer characteristic curve with the structural parameters of foams and the washcoat thickness were successfully verified and explained using the numerical data in both laminar and turbulent flows. The results show that the porosity not the pore/cell diameter is the reason of the moving of gas–solid interfacial heat transfer characteristic curve for uncoated/coated foams. In laminar flow, the porosity influences interfacial heat transfer characteristic curve through the effective thermal conduction of fluid phase; and in turbulent flow, interfacial heat transfer characteristic curve is affected by porosity through the inertial effect of flow. A new correlation of gas–solid interfacial heat transfer coefficient for uncoated/coated metal foams suitable for both laminar and turbulent flows was proposed by taking into consideration this phenomenon.

References

1.
Chin
,
P.
,
Sun
,
X.
,
Roberts
,
G. W.
, and
Spivey
,
J. J.
,
2006
, “
Preferential Oxidation of Carbon Monoxide With Iron-Promoted Platinum Catalysts Supported on Metal Foams
,”
Appl. Catal. A Gen.
,
302
(
1
), pp.
22
31
.10.1016/j.apcata.2005.11.030
2.
Zhao
,
C. Y.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3618
3632
.10.1016/j.ijheatmasstransfer.2012.03.017
3.
Giani
,
L.
,
Groppi
,
G.
, and
Tronconi
,
E.
,
2005
, “
Heat Transfer Characterization of Metallic Foams
,”
Ind. Eng. Chem. Res.
,
44
(
24
), pp.
9078
9085
.10.1021/ie050598p
4.
Mancin
,
S.
,
Zilio
,
C.
,
Cavallini
,
A.
, and
Rossetto
,
L.
,
2010
, “
Heat Transfer During Air Flow in Aluminum Foams
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4976
4984
.10.1016/j.ijheatmasstransfer.2010.05.033
5.
Mancin
,
S.
,
Zilio
,
C.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2013
, “
Air Forced Convection Through Metal Foams: Experimental Results and Modeling
,”
Int. J. Heat Mass Transfer
,
62
, pp.
112
123
.10.1016/j.ijheatmasstransfer.2013.02.050
6.
Abadi
,
G. B.
, and
Kim
,
K. C.
,
2017
, “
Experimental Heat Transfer and Pressure Drop in a Metal-Foam-Filled Tube Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
42
49
.10.1016/j.expthermflusci.2016.10.031
7.
Younis
,
L. B.
, and
Viskanta
,
R.
,
1993
, “
Experimental Determination of the Volumetric Heat Transfer Coefficient Between Stream of Air and Ceramic Foams
,”
Int. J. Heat Mass Transfer
,
36
(
6
), pp.
1425
1434
.10.1016/S0017-9310(05)80053-5
8.
Dietrich
,
B.
,
2013
, “
Heat Transfer Coefficients for Solid Ceramic Sponges-Experimental Results and Correlation
,”
Int. J. Heat Mass Transfer
,
61
, pp.
627
637
.10.1016/j.ijheatmasstransfer.2013.02.019
9.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
793
799
.10.1115/1.2227038
10.
Wu
,
Z.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z.
,
2011
, “
Numerical Simulation of Convective Heat Transfer Between Air Flow and Ceramic Foams to Optimise Volumetric Solar Air Receiver Performances
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1527
1537
.10.1016/j.ijheatmasstransfer.2010.11.037
11.
Diani
,
A.
,
Bodla
,
K. K.
,
Rossetto
,
L.
, and
Garimella
,
S. V.
,
2015
, “
Numerical Investigation of Pressure Drop and Heat Transfer Through Reconstructed Metal Foams and Comparison Against Experiments
,”
Int. J. Heat Mass Transfer
,
88
, pp.
508
515
.10.1016/j.ijheatmasstransfer.2015.04.038
12.
Iasiello
,
M.
,
Cunsolo
,
S.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2017
, “
Developing Thermal Flow in Open-Cell Foams
,”
Int. J. Therm. Sci.
,
111
, pp.
129
137
.10.1016/j.ijthermalsci.2016.08.013
13.
Zhao
,
C. Y.
,
Kim
,
T.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2004
, “
Thermal Transport in High Porosity Cellular Metal Foams
,”
J. Thermophys. Heat Transfer
,
18
(
3
), pp.
309
317
.10.2514/1.11780
14.
Bianchia
,
E.
,
Heidig
,
T.
,
Visconti
,
C. G.
,
Groppi
,
G.
,
Freund
,
H.
, and
Tronconi
,
E.
,
2012
, “
An Appraisal of the Heat Transfer Properties of Metallic Open-Cell Foams for Strongly Exo-/Endo-Thermic Catalytic Processes in Tubular Reactors
,”
Chem. Eng. J.
,
198–199
, pp.
512
528
.10.1016/j.cej.2012.05.045
15.
Peng
,
W. P.
,
Xu
,
M.
,
Li
,
X. F.
,
Huai
,
X. L.
,
Liu
,
Z. G.
, and
Wang
,
H. S.
,
2017
, “
CFD Study on Thermal Transport in Open-Cell Metal Foams With and Without a Washcoat: Effective Thermal Conductivity and Gas-Solid Interfacial Heat Transfer
,”
Chem. Eng. Sci.
,
161
, pp.
92
108
.10.1016/j.ces.2016.12.006
16.
Weaire
,
D.
, and
Phelan
,
R.
,
1994
, “
A Counter-Example to Kelvin's Conjecture on Minimal Surfaces
,”
Phil. Mag. Lett.
,
69
(
2
), pp.
107
110
.10.1080/09500839408241577
17.
Cunsolo
,
S.
,
Iasiello
,
M.
,
Oliviero
,
M.
,
Bianco
,
N.
,
Chiu
,
W. K.
, and
Naso
,
V.
,
2016
, “
Lord Kelvin and Weaire-Phelan Foam Models: Heat Transfer and Pressure Drop
,”
ASME J. Heat Transfer
,
138
(
2
), p.
022601
.10.1115/1.4031700
18.
Iasiello
,
M.
,
Cunsolo
,
S.
,
Oliviero
,
M.
,
Harris
,
W. M.
,
Bianco
,
N.
,
Chiu
,
W. K.
, and
Naso
,
V.
,
2014
, “
Numerical Analysis of Heat Transfer and Pressure Drop in Metal Foams for Different Morphological Models
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112601
.10.1115/1.4028113
19.
Ambrosio
,
G.
,
Bianco
,
N.
,
Chiu
,
W. K.
,
Iasiello
,
M.
,
Naso
,
V.
, and
Oliviero
,
M.
,
2016
, “
The Effect of Open-Cell Metal Foams Strut Shape on Convection Heat Transfer and Pressure Drop
,”
Appl. Therm. Eng.
,
103
, pp.
333
343
.10.1016/j.applthermaleng.2016.04.085
20.
Moon
,
C.
,
Kim
,
H. D.
, and
Kim
,
K. C.
,
2018
, “
Kelvin-Cell-Based Metal Foam Heat Exchanger With Elliptical Struts for Low Energy Consumption
,”
Appl. Therm. Eng.
,
144
, pp.
540
550
.10.1016/j.applthermaleng.2018.07.110
21.
Inayat
,
A.
,
Freund
,
H.
,
Zeiser
,
T.
, and
Schwieger
,
W.
,
2011
, “
Determining the Specific Surface Area of Ceramic Foams: The Tetrakaidecahedra Model Revisited
,”
Chem. Eng. Sci.
,
66
(
6
), pp.
1179
1188
.10.1016/j.ces.2010.12.031
22.
Inayat
,
A.
,
Klumpp
,
M.
,
Lammermann
,
M.
,
Freund
,
H.
, and
Schwieger
,
W.
,
2016
, “
Development of a New Pressure Drop Correlation for Open-Cell Foam Based Completely on Theoretical Grounds: Taking Into Account Strut Shape and Geometric Tortuosity
,”
Chem. Eng. J.
,
287
, pp.
704
719
.10.1016/j.cej.2015.11.050
23.
Dybbs
,
A.
, and
Edwards
,
R. V.
,
1984
, “
A New Look at Porous Media Fluid Mechanics—Darcy to Turbulent
,”
Fundamentals of Transport Phenomena in Porous Media
,
Springer
,
Dordrecht, The Netherlands
, pp.
199
256
.
24.
Hall
,
M. J.
, and
Hiatt
,
J. P.
,
1996
, “
Measurements of Pore Scale Flows Within and Exiting Ceramic Foams
,”
Exp. Fluids
,
20
(
6
), pp.
433
440
.10.1007/BF00189382
25.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
,
2000
, “
Effective Thermal Conductivity and Permeability of Aluminum Foam materials1
,”
Int. J. Thermophys.
,
21
(
2
), pp.
453
464
.10.1023/A:1006643815323
26.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
27.
Fourie
,
J. G.
, and
Du Plessis
,
J. P.
,
2002
, “
Pressure Drop Modelling in Cellular Metallic Foams
,”
Chem. Eng. Sci.
,
57
, pp.
2781
2789
.10.1016/S0009-2509(02)00166-5
28.
Dietrich
,
B.
,
Schabel
,
W.
,
Kind
,
M.
, and
Martin
,
H.
,
2009
, “
Pressure Drop Measurements of Ceramic Sponges-Determining the Hydraulic Diameter
,”
Chem. Eng. Sci.
,
64
(
16
), pp.
3633
3640
.10.1016/j.ces.2009.05.005
29.
Beugre
,
D.
,
Calvo
,
S.
,
Dethier
,
G.
,
Crine
,
M.
,
Toye
,
D.
, and
Marchot
,
P.
,
2010
, “
Lattice Boltzmann 3D Flow Simulations on a Metallic Foam
,”
J. Comput. Appl. Math.
,
234
(
7
), pp.
2128
2134
.10.1016/j.cam.2009.08.100
30.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.http://legacy.library.ucsf.edu/tid/efk76a99
31.
Peng
,
W. P.
,
Xu
,
M.
,
Huai
,
X. L.
,
Liu
,
Z. G.
, and
,
X. S.
,
2017
, “
Performance Evaluation of Oscillating Flow Regenerators Filled With Particles, Wire Screens and High Porosity Open-Cell Foams
,”
Appl. Therm. Eng.
,
112
, pp.
1612
1625
.10.1016/j.applthermaleng.2016.10.125
You do not currently have access to this content.