Abstract

An optimization of vapor chamber (VC) region's width and its wick porosity to achieve the minimum temperature rise of the vapor chamber is studied in this paper. The optimization process is carried out by particle swarm optimization (PSO) method. The study is performed at various widths of the vapor chamber, cooling rates, and input powers. The vapor chamber includes two solid copper plates, two wick regions, and vapor region between them. The required chamber characteristics for the optimization process are obtained by solving a complete VC mathematical model, which couples the thermal and hydrodynamic models. The optimum vapor chamber regions' thicknesses and the fluid flow through the vapor chamber regions are studied. The results illustrate that to minimize the chamber temperature, the wick region width must be minimized. They also show that increasing the total width of the chamber from 3 to 7 mm does not have a great impact on the chamber optimized temperature. Moreover, the vapor chamber width does not have a great impact on the optimum wick region width. The optimum width of the vapor region and the chamber walls augments with increasing the total vapor chamber width. Additionally, the form of temperature, streamlines, and velocity distributions at liquid and vapor regions at optimum conditions are not greatly influenced by increasing vapor chamber width.

References

1.
Poplaski
,
L. M.
,
Benn
,
S. P.
, and
Faghri
,
A.
,
2017
, “
Thermal Performance of Heat Pipes Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
107
, pp.
358
371
.10.1016/j.ijheatmasstransfer.2016.10.111
2.
Hassan
,
H.
, and
Harmand
,
S.
,
2013
, “
A Three-Dimensional Study of Electronic Component Cooling Using a Flat Heat Pipe
,”
Heat Transfer Eng.
,
34
(
7
), pp.
596
607
.10.1080/01457632.2013.730426
3.
Alexandre
,
O. S.
,
Mantelli Márcia
,
B. H.
, and
Milanez Fernando
,
H.
,
2007
, “
Use of Vapor Chamber on Electronic Devices to Eliminate Hot Spots Under Fin Heat Sinks
,”
14th International Heat Pipe Conference
, Florianópolis, Brazil, Apr. 22–27, pp.
22
27
.
4.
Vlassov
,
V. V.
,
de Sousa
,
F. L.
, and
Takahashi
,
W. K.
,
2006
, “
Comprehensive Optimization of a Heat Pipe Radiator Assembly Filled With Ammonia or Acetone
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4584
4595
.10.1016/j.ijheatmasstransfer.2006.02.059
5.
Hestenes
,
M. R.
, and
Stiefel
,
E.
,
1952
, “
Methods of Conjugate Gradients for Solving Linear Systems
,”
J. Res. Natl. Bur Stand
,
49
, pp.
409
435
.10.6028/jres.049.044
6.
Fletcher
,
R.
,
1980
, “
Practical Methods of Optimization
,”
Unconstrained Optimization
, Vol.
1
,
Wiley
,
New York
.
7.
Fletcher
,
R.
, and
Powell
,
M. J. D.
,
1963
, “
A Rapidly Convergent Descent Method for Minimization
,”
Comput. J.
,
6
(
2
), pp.
163
168
.10.1093/comjnl/6.2.163
8.
Goldfarb
,
D.
,
1970
, “
A Family of Variable-Metric Methods Derived by Variational Means
,”
Math. Comput.
,
24
(
109
), pp.
23
23
.10.1090/S0025-5718-1970-0258249-6
9.
Holland, J. H., 1992, Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence, MIT Press Ltd., Cambridge, MA.
10.
Lee
,
W. S.
,
Chen
,
Y. T.
, and
Wu
,
T. H.
,
2009
, “
Optimization for Ice-Storage Air-Conditioning System Using Particle Swarm Algorithm
,”
Appl. Energy
,
86
(
9
), pp.
1589
1595
.10.1016/j.apenergy.2008.12.025
11.
Poli
,
R.
,
2008
, “
Analysis of the Publications on the Applications of Particle Swarm Optimisation
,”
J. Artif. Evol. Appl.
,
2008
, pp.
1
10
.10.1155/2008/685175
12.
Agha
,
S. R.
,
2011
, “
Heat Pipe Performance Optimization: A Taguchi Approach
,”
Int. J. Res. Mech. Eng. Technol.
,
1
(
1
), pp.
93
97
.http://www.ijrmet.com/vol1/salah.pdf
13.
Park
,
Y. J.
,
Jun
,
S.
,
Kim
,
S.
, and
Lee
,
D. H.
,
2010
, “
Design Optimization of a Loop Heat Pipe to Cool a Lithium Ion Battery Onboard a Military Aircraft
,”
J. Mech. Sci. Technol.
,
24
(
2
), pp.
609
618
.10.1007/s12206-009-1214-6
14.
Rao
,
R. V.
, and
More
,
K. C.
,
2015
, “
Optimal Design of the Heat Pipe Using TLBO (Teaching-Learning-Based Optimization) Algorithm
,”
Energy
,
80
, pp.
535
544
.10.1016/j.energy.2014.12.008
15.
Pan
,
C.
,
Vermaak
,
N.
,
Romero
,
C.
,
Neti
,
S.
,
Hoenig
,
S.
, and
Chen
,
C.-H.
,
2017
, “
Efficient Optimization of a Longitudinal Finned Heat Pipe Structure for a Latent Thermal Energy Storage System
,”
Energy Convers. Manag.
,
153
, pp.
93
105
.10.1016/j.enconman.2017.09.064
16.
Nookaraju
,
B. C.
,
Kurmarao
,
P. S. V.
,
Nagasarada
,
S.
,
Karthikeyan
,
R.
, and
Vinay
,
A.
,
2018
, “
Optimization of Process Parameters of Helical Grooved Heat Pipe Using Response Surface Methodology
,”
Mater. Today Proc.
,
5
(
2
), pp.
5262
5271
.10.1016/j.matpr.2017.12.109
17.
Lurie
,
S. A.
,
Rabinskiy
,
L. N.
, and
Solyaev
,
Y. O.
,
2019
, “
Topology Optimization of the Wick Geometry in a Flat Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
,
128
, pp.
239
247
.10.1016/j.ijheatmasstransfer.2018.08.125
18.
Patel
,
V. K.
,
2018
, “
An Efficient Optimization and Comparative Analysis of Ammonia and Methanol Heat Pipe for Satellite Application
,”
Energy Convers. Manag.
,
165
, pp.
382
395
.10.1016/j.enconman.2018.03.076
19.
Nishikawara
,
M.
, and
Nagano
,
H.
,
2017
, “
Optimization of Wick Shape in a Loop Heat Pipe for High Heat Transfer
,”
Int. J. Heat Mass Transfer
,
104
, pp.
1083
1089
.10.1016/j.ijheatmasstransfer.2016.09.027
20.
Hassan
,
H.
, and
Harmand
,
S.
,
2013
, “
Parametric Study on the Effect of Vapour Chamber Characteristics on Its Performance
,”
ASME J. Heat Transfer
,
135
(
11
), pp.
169
183
10.1115/1.4024613
21.
Hassan
,
H.
, and
Harmand
,
S.
,
2015
, “
Study of the Parameters and Characteristics of Flat Heat Pipe With Nanofluids Subjected to Periodic Heat Load on Its Performance
,”
Int. J. Therm. Sci.
,
97
, pp.
126
142
.10.1016/j.ijthermalsci.2015.06.009
22.
Harmand
,
S.
,
Sonan
,
R.
,
Fakès
,
M.
, and
Hassan
,
H.
,
2011
, “
Transient Cooling of Electronic Components by Flat Heat Pipes
,”
Appl. Therm. Eng.
,
31
(
11–12
), pp.
1877
1885
.10.1016/j.applthermaleng.2011.02.034
23.
Xiao
,
B.
, and
Faghri
,
A.
,
2008
, “
A Three-Dimensional Thermal-Fluid Analysis of Flat Heat Pipes
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3113
3126
.10.1016/j.ijheatmasstransfer.2007.08.023
24.
Hassan
,
H.
, and
Harmand
,
S.
,
2015
, “
An Experimental and Numerical Study on the Effects of the Flat Heat Pipe Wick Structure on Its Thermal Performance
,”
Heat Transfer Eng.
,
36
, pp.
278
289
.10.1080/01457632.2014.916157
25.
Tournier
,
J. M.
, and
El-Genk
,
M. S.
,
1994
, “
A Heat Pipe Transient Analysis Model
,”
Int. J. Heat Mass Transfer
,
37
(
5
), pp.
753
762
.10.1016/0017-9310(94)90113-9
26.
Hassan
,
H.
, and
Harmand
,
S.
,
2017
, “
Effect of Operating Parameters on the Heat Transfer and Liquid Film Thickness of Revolving Heat Pipe
,”
Heat Transfer Eng.
,
38
(
5
), pp.
538
548
.10.1080/01457632.2016.1195175
27.
Eames
,
I. W.
,
Marr
,
N. J.
, and
Sabir
,
H.
,
1997
, “
The Evaporation Coefficient of Water
,”
Int. J. Heat Mass Transfer
,
40
(
12
), pp.
2963
2973
.10.1016/S0017-9310(96)00339-0
28.
Faghri
,
A.
,
1990
,
Heat Pipe Science and Technology
,
Taylor and Francis
,
Washington, DC
.
29.
Tsay
,
Y. L.
,
Lin
,
T. F.
, and
Yan
,
W. M.
,
1990
, “
Cooling of a Falling Liquid Film Through Interfacial Heat and Mass Transfer
,”
Int. J. Multiphase Flow
,
16
(
5
), pp.
853
865
.10.1016/0301-9322(90)90008-7
30.
Aminossadati
,
S. M.
, and
Ghasemi
,
B.
,
2011
, “
Enhanced Natural Convection in an Isosceles Triangular Enclosure Filled With a Nanofluid
,”
Comput. Math. Appl.
,
61
(
7
), pp.
1739
1753
.10.1016/j.camwa.2011.02.001
31.
Patankar
,
S.
,
1980
, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, San Francisco, CA.
32.
Baxter
,
R.
,
Hastings
,
N.
,
Law
,
A.
, and
Glass
,
E. J.
,
2008
, “
A Treatise on Electricity and Magnetism
,”
Anim. Genet.
,
39
(
5
), pp.
561
563
.10.1111/j.1365-2052.2008.01757.x
33.
Yasuda
,
K.
,
Ide
,
A.
, and
Iwasaki
,
N.
,
2003
, “
Adaptive Particle Swarm Optimization
,”
SMC'03 Conference Proceedings IEEE International Conference System Man Cybernetics. Conference Theme—System Security and Assurance
, Vol.
2
, Washington, DC, pp.
1554
1559
.
34.
Xie
,
X. F.
,
Zhang
,
W. J.
, and
Yang
,
Z. L.
,
2002
, “
Adaptive Particle Swarm Optimization on Individual Level
,”
International Conference Signal Process Proceedings, ICSP
, Aug. 26–30,
Beijing, China
, pp.
1215
1218
.
35.
Eberhart
, and
Shi
,
Y.
,
2001
, “
Particle Swarm Optimization: Developments, Applications and Resources
,”
Proceedings of the 2001 Congress on Evolutionary Computation
,
Seoul, South Korea
,
May 27–30
.10.1109/CEC.2001.934374
36.
Li
,
X. D.
, and
Engelbrecht
,
A. P.
,
2007
, “
Particle Swarm Optimization an Introduction and Its Recent Developments
,”
Proceedings of Genetic and Evolutionary Computation
,
London, UK
, pp.
3391
3414
.
37.
Zielinski
,
K.
, and
Laur
,
R.
,
2007
, “
Stopping Criteria for a Constrained Single-Objective Particle Swarm Optimization Algorithm
,” Informatica,
31
, pp.
51
59
.
38.
Takemitso
,
N.
,
1986
, “
An Implicit Finite Difference Method to Solve Incompressible Fluid Flow
,”
Bull JSME
,
28
, pp.
3319
3327
.10.1299/jsme1958.29.3319
39.
Ito
,
K.
, and
Qiao
,
Z.
,
2008
, “
A High Order Compact MAC Finite Difference Scheme for the Stokes Equations: Augmented Variable Approach
,”
J. Comput. Phys.
,
227
(
17
), pp.
8177
8190
.10.1016/j.jcp.2008.05.021
40.
Tu
,
J.
,
Yeoh
,
G. H.
, and
Liu
,
C.
,
1992
,
Computational for Fluid Dynamics
, 2nd ed.,
Elsevier
,
Amsterdam, The Netherlands
.
41.
Sonan
,
R.
,
2009
,
Modélisation du Comportement Thermique Transitoire D'un Caloduc: application au Refroidissement de L'électronique Alterno-Démarreur
,
Université de Valencienneset du Hainaut-Cambrésis
,
Valenciennes, France
.
42.
Hirt
,
C. W.
,
Nichols
,
B. D.
, and
Romero
,
N. G.
,
1975
, “
SOLA-A Numerical Solution Algorithm for Transient Fluid Flow
,” Los Alamos Scientific Laboratory, New York, Report No. LA-5852.88.
43.
Chan
,
A. M. C.
, and
Banerjee
,
S.
,
1979
, “
Three-Dimensional Numerical Analysis of Transient Natural Convection in Rectangular Enclosures
,”
ASME J. Heat Transfer
,
101
(
1
), p.
114
.10.1115/1.3450900
44.
Sonan
,
R.
,
Harmand
,
S.
,
Pellé
,
J.
,
Leger
,
D.
, and
Fakès
,
M.
,
2008
, “
Transient Thermal and Hydrodynamic Model of Flat Heat Pipe for the Cooling of Electronics Components
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6006
6017
.10.1016/j.ijheatmasstransfer.2008.04.071
45.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME International Mechanical Engineering Congress & Exposition
, San Francisco, CA, Nov. 12–17.https://www.researchgate.net/publication/236353373_Enhancing_thermal_conductivity_of_fluids_with_nanoparticles
46.
Hassan
,
H.
, and
Harmand
,
S.
,
2013
, “
3D Transient Model of Vapour Chamber: Effect of Nanofluids on Its Performance
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
1191
1201
.10.1016/j.applthermaleng.2012.10.047
47.
Ming
,
Z.
,
Zhongliang
,
L.
, and
Guoyuan
,
M.
,
2009
, “
The Experimental and Numerical Investigation of a Grooved Vapor Chamber
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
422
430
.10.1016/j.applthermaleng.2008.03.030
You do not currently have access to this content.