Abstract

In this work, we propose an experimental setup to measure the thermal conductivity and specific heat of a single suspended glass fiber, as well as the thermal contact resistance between two glass fibers. By using optical lithography, wet and dry etching and thin film deposition, we prepared suspended glass fibers that are coated by niobium nitride (NbN) thin film used as room temperature thermal transducer. By using the 3ω technique, the thermal conductivity of glass fiber was measured to be 1.1 W m−1 K–1 and specific heat 0.79 J g−1 K–1 around 300 K under vacuum conditions. By introducing exchange gas into the measurement chamber, influence of the gas on the heat transfer was studied, and the convection coefficient h for all the measurement ranges from a pressure of 0.01 hPa to 1000 hPa, over more than five orders of magnitude, has been obtained. By adding a bridging glass fiber on top of two other suspended glass fibers, it was possible to estimate the thermal contact resistance between two glass fibers Rc in the range of 107–108 K W–1.

References

1.
Allouhi
,
A.
,
El Fouih
,
Y.
,
Kousksou
,
T.
,
Jamil
,
A.
,
Zeraouli
,
Y.
, and
Mourad
,
Y.
,
2015
, “
Energy Consumption and Efficiency in Buildings: Current Status and Future Trends
,”
J. Cleaner Prod.
,
109
, pp.
118
130
.10.1016/j.jclepro.2015.05.139
2.
Tanic
,
M.
,
Stankovic
,
D.
,
Nikolic
,
V.
,
Nikolic
,
M.
,
Kostic
,
D.
,
Milojkovic
,
A.
,
Spasic
,
S.
, and
Vatin
,
N.
,
2015
, “
Reducing Energy Consumption by Optimizing Thermal Losses and Measures of Energy Recovery in Preschools
,”
Procedia Eng.
,
117
, pp.
919
932
.10.1016/j.proeng.2015.08.179
3.
Jelle
,
B.
,
2011
, “
Traditional, State-of-the-Art and Future Thermal Building Insulation Materials and Solutions—Properties, Requirements and Possibilities
,”
Energy Build.
,
43
(
10
), pp.
2549
2563
.10.1016/j.enbuild.2011.05.015
4.
Langlais
,
C.
, and
Klarsfeld
,
S.
,
2004
, “
Isolation Thermique à Température Ambiante. Propriétés
,”
Tech. de L'Ingénieur
, base documentaire: TIB227DUO, Editions T.I., p.
c3372
5.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement From 30 to 750 k: The 3ω Method
,”
Rev. Sci. lnstrum.
,
61
(
2
), pp.
802
808
.10.1063/1.1141498
6.
Lu
,
L.
,
Yi
,
W.
, and
Zhang
,
D.
,
2001
, “
3ω Method for Specific Heat and Thermal Conductivity Measurements
,”
Rev. Sci. lnstrum.
,
72
(
7
), pp.
2996
3003
.10.1063/1.1378340
7.
Choi
,
T. Y.
,
Poulikakos
,
D.
,
Tharian
,
J.
, and
Sennhauser
,
U.
,
2006
, “
Measurement of the Thermal Conductivity of Individual Carbon Nanotubes by the Four-Point 3ω Method
,”
Nano Lett.
,
6
(
8
), pp.
1589
1593
.10.1021/nl060331v
8.
Hou
,
J.
,
Wang
,
X.
,
Vellelacheruvu
,
P.
,
Guo
,
J.
,
Liu
,
C.
, and
Cheng
,
H.-M.
,
2006
, “
Thermal Characterization of Single-Wall Carbon Nanotube Bundles Using the Self-Heating 3ω Technique
,”
J. Appl. Phys.
,
100
(
12
), p.
124314
.10.1063/1.2402973
9.
Bourgeois
,
O.
,
Fournier
,
T.
, and
Chaussy
,
J.
,
2007
, “
Measurement of the Thermal Conductance of Silicon Nanowires at Low Temperature
,”
J. Appl. Phys.
,
101
(
1
), p.
016104
.10.1063/1.2400093
10.
Heron
,
J. S.
,
Fournier
,
T.
,
Mingo
,
N.
, and
Bourgeois
,
O.
,
2009
, “
Mesoscopic Size Effects on the Thermal Conductance of Silicon Nanowire
,”
Nano Lett.
,
9
(
5
), pp.
1861
1965
.10.1021/nl803844j
11.
Schiffres
,
S.
, and
Malen
,
J.
,
2011
, “
Improved 3ω Measurement of Thermal Conductivity in Liquid, Gases, and Powders Using a Metal-Coated Optical Fiber
,”
Rev. Sci. lnstrum.
,
82
(
6
), p.
064903
.10.1063/1.3593372
12.
Sikora
,
A.
,
Ftouni
,
H.
,
Richard
,
J.
,
Hébert
,
C.
,
Eon
,
D.
,
Omnes
,
F.
, and
Bourgeois
,
O.
,
2012
, “
Highly Sensitive Thermal Conductivity Measurements of Suspended Membranes (Sin and Diamond) Using a 3ω-Völklein Method
,”
Rev. Sci. Instrum.
,
83
(
5
), p.
054902
.10.1063/1.4704086
13.
Sikora
,
A.
,
Ftouni
,
H.
,
Richard
,
J.
,
Hébert
,
C.
,
Eon
,
D.
,
Omnes
,
F.
, and
Bourgeois
,
O.
,
2013
, “
Erratum: ‘Highly Sensitive Thermal Conductivity Measurements of Suspended Membranes (Sin and Diamond) Using a 3ω Völklein Method’ [Rev. Sci. Instrum. 83, 054902 (2012)]
,”
Rev. Sci. Instrum
,
84
(
2
), p.
029901
.10.1063/1.4793652
14.
Finefrock
,
S. W.
,
Wang
,
Y.
,
Ferguson
,
J. B.
,
Ward
,
J. V.
,
Fang
,
H.
,
Pfluger
,
J. E.
,
Dudis
,
D. S.
,
Ruan
,
X.
, and
Wu
,
Y.
,
2013
, “
Measurement of Thermal Conductivity of Pbte Nanocrystal Coated Glass Fibers by the 3ω Method
,”
Nano Lett.
,
13
(
11
), pp.
5006
5012
.10.1021/nl400558u
15.
Xing
,
C.
,
Jensen
,
C.
,
Munro
,
T.
,
White
,
B.
,
Ban
,
H.
, and
Chirtoc
,
M.
,
2014
, “
Accurate Thermal Property Measurement of Fine Fibers by the 3ω Technique
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
317
324
.10.1016/j.applthermaleng.2014.07.035
16.
Xing
,
C.
,
Jensen
,
C.
,
Munro
,
T.
,
White
,
B.
,
Ban
,
H.
, and
Chirtoc
,
M.
,
2014
, “
Thermal Property Characterization of Fine Fibers by the 3ω Technique
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
589
595
.10.1016/j.applthermaleng.2014.06.022
17.
Munro
,
T.
,
Xing
,
C.
,
Ban
,
H.
,
Copeland
,
C.
,
Lewis
,
R.
, and
Glorieux
,
C.
,
2015
, “
Thermal Property Measurement of Thin Fibers-a Direct Approach
,”
ASME Paper No. IMECE2015-52056
.10.1115/IMECE2015-52056
18.
Kommandur
,
S.
,
Mahdavifar
,
A.
,
Hesketh
,
P. J.
, and
Yee
,
S.
,
2015
, “
A Microbridge Heater for Low Power Gas Sensing Based on the 3ω Technique
,”
Sens. Actuators A
,
233
, pp.
231
238
.10.1016/j.sna.2015.07.011
19.
Hou
,
J.
,
Wang
,
X.
, and
Guo
,
J.
,
2006
, “
Thermal Characterization of Micro/Nanoscale Conductive and Non-Conductive Wires Based on Optical Heating and Electrical Thermal Sensing
,”
J. Phys. D: Appl. Phys.
,
39
(
15
), pp.
3362
3370
.10.1088/0022-3727/39/15/021
20.
Guo
,
J.
,
Wang
,
X.
,
Geohegan
,
D. B.
,
Eres
,
G.
, and
Vincent
,
C.
,
2008
, “
Development of Pulsed Laser-Assisted Thermal Relaxation Technique for Thermal Characterization of Microscale Wires
,”
J. Appl. Phys.
,
103
(
11
), p.
113505
.10.1063/1.2936873
21.
Guo
,
J.
,
Wang
,
X.
,
Geohegan
,
D. B.
, and
Eres
,
G.
,
2008
, “
Thermal Characterization of Multi-Wall Carbon Nanotube Bundles Based on Pulsed Laser-Assisted Thermal Relaxation
,”
Funct. Mater. Lett.
,
1
(
01
), pp.
71
76
.10.1142/S1793604708000137
22.
Guo
,
J.
,
Wang
,
X.
, and
Wang
,
T.
,
2007
, “
Thermal Characterization of Microscale Conductive and Nonconductive Wires Using Transient Electrothermal Technique
,”
J. Appl. Phys.
,
101
(
6
), p.
063537
.10.1063/1.2714679
23.
Park
,
B. K.
,
Park
,
J.
, and
Kim
,
D.
,
2010
, “
Note: Three-Omega Method to Measure Thermal Properties of Subnanoliter Liquid Samples
,”
Rev. Sci. Instrum.
,
81
(
6
), p.
066104
.10.1063/1.3441963
24.
Lee
,
S. M.
,
2009
, “
Thermal Conductivity Measurement of Fluids Using the 3ω Method
,”
Rev. Sci. Instrum.
,
80
(
2
), p.
024901
.10.1063/1.3082036
25.
Gao
,
J.
,
Xie
,
D.
,
Xiong
,
Y.
, and
Yue
,
Y.
,
2018
, “
Thermal Characterization of Microscale Heat Convection in Rare-Gas Environment by a Steady State ‘Hot Wire’ Method
,”
Appl. Phys. Express
,
11
(
6
), p.
066601
.10.7567/APEX.11.066601
26.
Yang
,
J.
,
Waltermire
,
S.
,
Chen
,
Y.
,
Zinn
,
A. A.
,
Xu
,
T.
, and
Li
,
D.
,
2010
, “
Contact Thermal Resistance Between Individual Multiwall Carbon Nanotubes
,”
Appl. Phys. Lett.
,
96
(
2
), p.
023109
.10.1063/1.3292203
27.
Guo
,
L.
,
Wang
,
J.
,
Lin
,
Z.
,
Gacek
,
S.
, and
Wang
,
X.
,
2009
, “
Anisotropic Thermal Transport in Highly Ordered TiO2 Nanotube Arrays
,”
J. Appl. Phys.
,
106
(
12
), p.
123526
.10.1063/1.3273361
28.
Wang
,
J.
,
Song
,
B.
,
Gu
,
M.
, and
Zhang
,
X.
,
2010
, “
Temperature Dependence of Thermal Resistance of a Bare Joint
,”
Int. J. Heat Mass Trans.
,
53
(
23–24
), pp.
5350
5354
.10.1016/j.ijheatmasstransfer.2010.07.021
29.
Wang
,
J. L.
,
Gu
,
M.
,
Zhang
,
X.
, and
Song
,
Y.
,
2009
, “
Thermal Conductivity Measurement of an Individual Fibre Using a t Type Probe Method
,”
J. Phys. D: Appl. Phys.
,
42
(
10
), p.
105502
.10.1088/0022-3727/42/10/105502
30.
Wang
,
J.
,
Gu
,
M.
,
Zhang
,
X.
, and
Wu
,
G.
,
2009
, “
Measurements of Thermal Effusivity of a Fine Wire and Contact Resistance of a Junction Using a t Type Probe
,”
Rev. Sci. Instrum.
,
80
(
7
), p.
076107
.10.1063/1.3159863
31.
Bourgeois
,
O.
,
André
,
E.
,
Macovei
,
C.
, and
Chaussy
,
J.
,
2006
, “
Liquid Nitrogen to Room-Temperature Thermometry Using Niobium Nitride Thin Films
,”
Rev. Sci. Instrum.
,
77
(
12
), p.
126108
.10.1063/1.2403934
32.
Carslaw
,
H.
, and
Jaeger
,
J.
,
1959
,
Conduction of Heat in Solids
,
Oxford at Clarendon Press
,
Oxford, UK
33.
Demirel
,
Y.
, and
Saxena
,
S. C.
,
1996
, “
Heat Transfer in Rarefied Gas at a Gas-Solid Interface
,”
Energy
,
21
, pp.
99
103
.10.1016/0360-5442(95)00096-8
34.
Kuehn
,
T.
, and
Goldstein
,
R.
,
1976
, “
Correlating Equations for Natural Convection Heat Transfer Between Horizontal Circular Cylinders
,”
Int. J. Heat Mass Trans.
,
19
(
10
), pp.
1127
1134
.10.1016/0017-9310(76)90145-9
35.
Maxwell
,
J. C.
,
1890
, “
The Scientific Papers of James Clerk Maxwell
,”.
36.
Kennard
,
E. H.
,
1938
,
Kinetic Energy of Gases
,
Mc Graw—Hill Book Company
,
Oxford, UK
.
37.
Hadj-Nacer
,
M.
,
Maharjan
,
D.
,
Ho
,
M. T.
,
Stefanov
,
S. K.
,
Graur
,
I.
, and
Greiner
,
M.
,
2017
, “
Continuum and Kinetic Simulations of Heat Transfer Trough Rarefied Gas in Annular and Planar Geometries in the Slip Regime
,”
ASME J. Heat Trans.
,
139
(
4
), p.
042002
.10.1115/1.4035172
38.
Spurgeon
,
W. A.
,
2018
, “
Thermal Conductivities of Some Polymers and Composites
,” U.S. Army Research Laboratory,
Cambridge, MA
, Report No. ARL-TR-8298.
39.
Kittel
,
C.
,
1949
, “
Interpretation of the Thermal Conductivity of Glasses
,”
Phys. Rev.
,
75
(
6
), pp.
972
974
.10.1103/PhysRev.75.972
40.
Ratcliffe
,
E. H.
,
1963
, “
Thermal Conductivities of Glass Between −150 °C and 100 °C
,”
Glass Technol.
,
4
(
4
). 
41.
Ratcliffe
,
E. H.
,
1961
, “
Symposium on Heat Transfer Phenomena in Glass
,”
J. Am. Ceram. Soc.
,
44
(
7
), p.
301
.
42.
Ftouni
,
H.
,
Tainoff
,
D.
,
Richard
,
J.
,
Lulla
,
K.
,
Guidi
,
J.
,
Collin
,
E.
, and
Bourgeois
,
O.
,
2013
, “
Specific Heat Measurement of Thin Suspended Sin Membrane From 8 k to 300 k Using the 3ω-Völklein Method
,”
Rev. Sci. Instrum.
,
84
(
9
), p.
094902
.10.1063/1.4821501
43.
Ftouni
,
H.
,
Blanc
,
C.
,
Tainoff
,
D.
,
Fefferman
,
A. D.
,
Defoort
,
M.
,
Lulla
,
K. J.
,
Richard
,
J.
,
Collin
,
E.
, and
Bourgeois
,
O.
,
2015
, “
Thermal Conductivity of Silicon Nitride Membranes is Not Sensitive to Stress
,”
Phys. Rev. B
,
92
(
12
), p.
125439
.10.1103/PhysRevB.92.125439
44.
Fujii
,
T.
,
Fujii
,
M.
, and
Honda
,
T.
,
1982
, “
Theoretical and Experimental Studies of the Free Convection Around a Long Horizontal Thin Wire in Air
,”
Proceedings of the Seventh International Heat Transfer Conference
, Vol.
2
, U. Grigull, E. Hahne, K. Stephan, and J. Straub, eds., Hemisphere,
Munich, Germany
, pp.
311
316
.10.1615/IHTC7.3300
45.
Jack Hu
,
X.
,
Jain
,
A.
, and
K.E
,
G.
,
2008
, “
Investigation of the Natural Convection Boundary Condition in Microfabricated Structures
,”
Int. J. Therm. Sci.
,
47
(
7
), pp.
820
824
.10.1016/j.ijthermalsci.2007.07.011
46.
Wang
,
H.
,
Liu
,
J.
,
Zhang
,
X.
,
Li
,
T.
,
Zhang
,
R.
, and
Wei
,
F.
,
2013
, “
Heat Transfer Between an Individual Carbon Nanotube and Gas Environment in a Wide Knudsen Number Regime
,”
J. Nanomater.
,
2013
, pp.
1
7
.10.1155/2013/181543
47.
Fujiwara
,
S.
,
Zhang
,
X.
, and
Fujii
,
M.
,
2001
, “
Short-Hot-Wire Method for the Measurement of Total Hemispherical Emissivity of a Fine Fibre
,”
High Temperatures-High Pressures
,
33
(
3
), pp.
271
278
.10.1068/htwu375
48.
Kim
,
K.
,
Chung
,
J.
,
Hwang
,
G.
,
Kwon
,
O.
, and
Lee
,
J.
,
2011
, “
Quantitative Measurement With Scanning Thermal Microscope by Preventing the Distortion Due to the Heat Transfer Through the Air
,”
ACS Nano
,
5
(
11
), pp.
8700
8709
.10.1021/nn2026325
49.
Shi
,
L.
, and
Majumdar
,
A.
,
2002
, “
Thermal Transport Mechanisms at Nanoscale Point Contacts
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
329
337
.10.1115/1.1447939
50.
Bresson
,
B.
,
Brun
,
C.
,
Buet
,
X.
,
Chen
,
Y.
,
Ciccotti
,
M.
,
Gateau
,
J.
,
Jasion
,
G.
,
Petrovich
,
M.
,
Poletti
,
F.
,
Richardson
,
D.
,
Sandoghchi
,
S.
,
Tessier
,
G.
,
Tyukodi
,
B.
, and
Vandembroucq
,
D.
,
2017
, “
Thermal Transport Mechanisms at Nanoscale Point Contacts
,”
Phys. Rev. Lett.
,
119
(
23
), p.
235501
.10.1103/PhysRevLett.119.235501
51.
Fiorino
,
A.
,
Thompson
,
D.
,
Zhu
,
L.
,
Song
,
B.
,
Reddy
,
P.
, and
Meyhofer
,
E.
,
2018
, “
Giant Enhancement in Radiative Heat Transfer in Sub-30 nm Gaps of Plane Parallel Surfaces
,”
Nano Lett.
,
18
(
6
), pp.
3711
3715
.10.1021/acs.nanolett.8b00846
52.
Song
,
B.
,
Thompson
,
D.
,
Fiorino
,
A.
,
Ganjeh
,
Y.
,
Reddy
,
P.
, and
Meyhofer
,
E.
,
2016
, “
Radiative Heat Conductances Between Dielectric and Metallic Parallel Plates With Nanoscale Gaps
,”
Nat. Nanotech.
,
11
(
6
), pp.
509
514
.10.1038/nnano.2016.17
You do not currently have access to this content.