Abstract

A copper–water closed flat pulsating heat pipe (PHP), 3.4 m long and of inner diameter 4 mm, was manufactured and tested. This PHP aims both at homogenizing the temperature of a large aluminum plate, of surface area 150 × 420 mm2, and at lowering its mean temperature by transferring the heat to an adjacent heat sink of same dimensions. The PHP thermal resistance is measured at various heat transfer rates, condenser temperatures, and inclination angles. It decreases when the heat transfer rate increases or when the PHP is progressively tilted from the vertical unfavorable orientation to a favorable one. Resistance values as low as 0.04 K/W are measured. Whatever the conditions, a minimum heat input of 200 W is necessary for the correct start-up of the PHP. A map of the operating regimes—no-flow, oscillating, intermittent, and stable behavior—is proposed. Nonreproducibility effects are highlighted in tilted position, leading to different operating regimes at increasing and decreasing heat loads, but also more broadly depending on the history of the working operating conditions of the PHP. However, the concept proposed in this work is very promising for applications involving large heat source and heat sink.

References

1.
Han
,
X.
,
Wang
,
X.
,
Zheng
,
H.
,
Xu
,
X.
, and
Chen
,
G.
,
2016
, “
Review of the Development of Pulsating Heat Pipe for Heat Dissipation
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
692
709
.10.1016/j.rser.2015.12.350
2.
Lips
,
S.
, and
Bonjour
,
J.
,
2007
, “
Oscillating Two-Phase Flow in a Capillary Tube: Experiments and Modeling
,”
14th International Heat Pipe Conference (IHPC)
,
Florianopolis, Brazil
,
Apr. 22–27
.
3.
Das
,
S. P.
,
Nikolayev
,
V. S.
,
Lefevre
,
F.
,
Pottier
,
B.
,
Khandekar
,
S.
, and
Bonjour
,
J.
,
2010
, “
Thermally Induced Two-Phase Oscillating Flow Inside a Capillary Tube
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3905
3913
.10.1016/j.ijheatmasstransfer.2010.05.009
4.
Rao
,
M.
,
Lefèvre
,
F.
,
Khandekar
,
S.
, and
Bonjour
,
J.
,
2015
, “
Heat and Mass Transfer Mechanisms of a Self-Sustained Thermally Driven Oscillating Liquid–Vapour Meniscus
,”
Int. J. Heat Mass Transfer
,
86
, pp.
519
530
.10.1016/j.ijheatmasstransfer.2015.03.015
5.
Nikolayev
,
V. S.
,
2010
, “
Dynamics of the Triple Contact Line on a Nonisothermal Heater at Partial Wetting
,”
Phys. Fluids
,
22
(
8
), p.
082105
.10.1063/1.3483558
6.
Callegari
,
G.
,
Calvo
,
A.
, and
Hulin
,
J. P.
,
2005
, “
Dewetting Processes in a Cylindrical Geometry
,”
Eur. Phys. J. E
,
16
(
3
), pp.
283
290
.10.1140/epje/i2004-10082-4
7.
Bertossi
,
R.
,
Ayel
,
V.
,
Mehta
,
B.
,
Romestant
,
C.
,
Bertin
,
Y.
, and
Khandekar
,
S.
,
2017
, “
Motion of Liquid Plugs Between Vapor Bubbles in Capillary Tubes: A Comparison Between Fluids
,”
Heat Mass Transfer
,
53
(
11
), pp.
3315
3327
.10.1007/s00231-017-2052-1
8.
Khandekar
,
S.
,
2004
, “
Thermo-Hydrodynamics of Closed Loop Pulsating Heat Pipes
,”
Doctoral dissertation
, University of Stuttgart, Stuttgart, Germany.http://home.iitk.ac.in/~samkhan/Bio_data/publications/Khandekar_PhD_Thesis.pdf
9.
Lips
,
S.
,
Bensalem
,
A.
,
Bertin
,
Y.
,
Ayel
,
V.
,
Romestant
,
C.
, and
Bonjour
,
J.
,
2010
, “
Experimental Evidences of Distinct Heat Transfer Regimes in Pulsating Heat Pipes (PHP)
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
900
907
.10.1016/j.applthermaleng.2009.12.020
10.
Leu
,
T.-S.
, and
Wu
,
C.-H.
,
2017
, “
Experimental Studies of Surface Modified Oscillating Heat Pipes
,”
Heat Mass Transfer
,
53
(
11
), pp.
3329
3340
.10.1007/s00231-017-2051-2
11.
Kim
,
W.
, and
Kim
,
S. J.
,
2018
, “
Effect of Reentrant Cavities on the Thermal Performance of a Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
133
, pp.
61
69
.10.1016/j.applthermaleng.2018.01.027
12.
Dufraisse
,
D.
,
Ayel
,
V.
,
Bertin
,
Y.
, and
Romestant
,
C.
,
2016
, “
Performances and Limits of a Multi-Source Pulsating Heat Pipe Tested Under High Heat Flux Density
,”
Joint 18th IHPC and 12th IHPS
,
Jeju, South Korea
,
June 12–16
.
13.
Thompson
,
S. M.
,
Ma
,
H. B.
, and
Wilson
,
C.
,
2011
, “
Investigation of a Flat-Plate Oscillating Heat Pipe With Tesla-Type Check Valves
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1265
1273
.10.1016/j.expthermflusci.2011.04.014
14.
Mameli
,
M.
,
Marengo
,
M.
, and
Zinna
,
S.
,
2012
, “
Numerical Investigation of the Effects of Orientation and Gravity in a Closed Loop Pulsating Heat Pipe
,”
Microgravity Sci. Technol.
,
24
(
2
), pp.
79
92
.10.1007/s12217-011-9293-2
15.
Taft
,
B.
,
2013
, “
Non-Condensable Gases and Oscillating Heat Pipe Operation
,”
Front. Heat Pipes
,
4
(
1
), p.
013003
.
16.
Fumoto
,
K.
,
Ishida
,
T.
,
Kawanami
,
T.
, and
Inamura
,
T.
,
2015
, “
Experimental Study on Pulsating Heat Pipe Using Self-Rewetting Fluid as a Working Fluid: Visualization of Thin Liquid Film and Surface Wave
,”
Heat Pipe Sci. Technol. Int. J.
,
6
(
1–2
), pp.
65
76
.10.1615/HeatPipeScieTech.2015013430
17.
Stutz
,
B.
,
Morceli
,
C. H. S.
,
da Silva
,
M. D. F.
,
Cioulachtjian
,
S.
, and
Bonjour
,
J.
,
2011
, “
Influence of Nanoparticle Surface Coating on Pool Boiling
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1239
1249
.10.1016/j.expthermflusci.2011.04.011
18.
Blet
,
N.
,
Lips
,
S.
, and
Sartre
,
V.
,
2017
, “
Heats Pipes for Temperature Homogenization: A Literature Review
,”
Appl. Therm. Eng.
,
118
, pp.
490
509
.10.1016/j.applthermaleng.2017.03.009
19.
Mameli
,
M.
,
Manno
,
V.
,
Filippeschi
,
S.
, and
Marengo
,
M.
,
2014
, “
Thermal Instability of a Closed Loop Pulsating Heat Pipe: Combined Effect of Orientation and Filling Ratio
,”
Exp. Therm. Fluid Sci.
,
59
, pp.
222
229
.10.1016/j.expthermflusci.2014.04.009
20.
Nekrashevych
,
I.
, and
Nikolayev
,
V. S.
,
2018
, “
Pulsating Heat Pipe Simulations: Impact of PHP Orientation
,”
Joint 19th IHPC and 13th IHPS
,
Pisa, Italy
,
June 10–14
.
21.
Pagnoni
,
F.
,
Ayel
,
V.
,
Romestant
,
C.
, and
Bertin
,
Y.
,
2018
, “
Experimental Behaviors of Closed Loop Flat Plate Pulsating Heat Pipes: A Parametric Study
,”
Joint 19th IHPC and 13th IHPS
,
Pisa, Italy
,
June 10–14
.
22.
Hemadri
,
V. A.
,
Gupta
,
A.
, and
Khandekar
,
S.
,
2011
, “
Thermal Radiators With Embedded Pulsating Heat Pipes: Infra-Red Thermography and Simulations
,”
Appl. Therm. Eng.
,
31
(
6–7
), pp.
1332
1346
.10.1016/j.applthermaleng.2011.01.004
23.
Karthikeyan
,
V. K.
,
Khandekar
,
S.
,
Pillai
,
B. C.
, and
Sharma
,
P. K.
,
2014
, “
Infrared Thermography of a Pulsating Heat Pipe: Flow Regimes and Multiple Steady States
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
470
480
.10.1016/j.applthermaleng.2013.09.041
24.
Spinato
,
G.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2016
, “
Operational Regimes in a Closed Loop Pulsating Heat Pipe
,”
Int. J. Therm. Sci.
,
102
, pp.
78
88
.10.1016/j.ijthermalsci.2015.11.006
25.
Han
,
H.
,
Cui
,
X.
,
Zhu
,
Y.
, and
Sun
,
S.
,
2014
, “
A Comparative Study of the Behavior of Working Fluids and Their Properties on the Performance of Pulsating Heat Pipes (PHP)
,”
Int. J. Therm. Sci.
,
82
, pp.
138
147
.10.1016/j.ijthermalsci.2014.04.003
You do not currently have access to this content.