The performance of a flat-plate solar collector is usually assessed by its efficiency. This efficiency is normally defined on a steady-state basis, which makes it difficult to correctly track the instantaneous performance of the collector in various case-studies. Accordingly, this paper proposes an improved definition of instantaneous efficiency of a flat-plate solar collector used as a part of a solar water heating system. Using a predeveloped model by the authors for such a system, the proposed efficiency-definition is examined and compared with the conventional one for specific case studies. The results show that the improved definition of efficiency records reasonable values, i.e., no over-range values are observed contrast to the case of conventional efficiency-definition. Furthermore, this suggested efficiency approximately coincides with the conventional one at a wide range of time, as long as the system is operating in the so-called trans-steady-state phase or when the system is off-operational provided that the instantaneous rate of heat stored in the heat transfer fluid (HTF) is less than or equal to zero. As a result, the improved efficiency-definition yields more realistic results in reflecting the performance of a flat-plate collector in an active solar water heating system and is recommended to be used.

References

1.
ASHRAE,
2003
, “Methods of Testing to Determine the Thermal Performance of Solar Collectors,” American Society of Heating, Refrigerating, and Air Conditioning Engineers, Atlanta, GA, Standard No. ASHRAE 93.
2.
AENOR,
2006
, “Sistemas Solares Térmicos y Components, Captadores Solares,” The Spanish Association for Standardization and Certification, Madrid, Spain, Standard No. UNE: EN 12975.
3.
Rodríguez-Hidalgo
,
M. C.
,
Rodríguez-Aumente
,
P. A.
,
Lecuona
,
A.
, and
Nogueira
,
J.
,
2012
, “
Instantaneous Performance of Solar Collectors for Domestic Hot Water, Heating and Cooling Applications
,”
Energy Build.
,
45
, pp.
152
160
.
4.
Tagliafico
,
L. A.
,
Scarpa
,
F.
, and
De Rosa
,
M.
,
2014
, “
Dynamic Thermal Models and CFD Analysis for Flat-Plate Thermal Solar Collectors—A Review
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
526
537
.
5.
Shan
,
F.
,
Tang
,
F.
,
Cao
,
L.
, and
Fang
,
G.
,
2014
, “
Dynamic Characteristics Modeling of a Hybrid Photovoltaic–Thermal Solar Collector With Active Cooling in Buildings
,”
Energy Build.
,
78
, pp.
215
221
.
6.
Hamed
,
M.
,
Fellah
,
A.
, and
Ben Brahim
,
A.
,
2014
, “
Parametric Sensitivity Studies on the Performance of a Flat Plate Solar Collector in Transient Behavior
,”
Energy Convers. Manage.
,
78
, pp.
938
947
.
7.
Muschaweck
,
J.
, and
Spirkl
,
W.
,
1993
, “
Dynamic Solar Collector Performance Testing
,”
Sol. Energy Mater. Sol. Cells
,
30
(2), pp.
95
105
.
8.
Hilmer
,
F.
,
Vajen
,
K.
,
Ratka
,
A.
,
Ackermann
,
H.
,
Fuhs
,
W.
, and
Melsheimer
,
O.
,
1999
, “
Numerical Solution and Validation of a Dynamic Model of Solar Collector Working With Varying Fluid Flow Rate
,”
Sol. Energy
,
65
(
5
), pp.
305
321
.
9.
Villar
,
N. M.
,
Lòpez
,
J. M. C.
,
Muñoz
,
F. D.
,
Garcìa
,
E. R.
, and
Andreas
,
A. C.
,
2009
, “
Numerical 3-D Heat Flux Simulations on Flat Plate Solar Collectors
,”
Sol. Energy
,
83
(7), pp.
1086
1092
.
10.
Cadfalch
,
J.
,
2009
, “
A Detailed Numerical Model for Flat-Plate Solar Thermal Devices
,”
Sol. Energy
,
83
(12), pp.
2157
2164
.
11.
Martinopoulos
,
G.
,
Missirlis
,
D.
,
Tsilingiridis
,
G.
,
Yakinthos
,
K.
, and
Kyriakis
,
N.
,
2010
, “
CFD Modeling of a Polymer Solar Collector
,”
Renewable Energy
,
35
(7), pp.
1499
1508
.
12.
Dovic
,
D.
, and
Andrassy
,
M.
,
2012
, “
Numerically Assisted Analysis of Flat and Corrugated Plate Solar Collectors Thermal Performances
,”
Sol. Energy
,
86
(9), pp.
2416
3431
.
13.
Kessentini
,
H.
,
Castro
,
J.
,
Capdevila
,
R.
, and
Oliva
,
A.
,
2014
, “
Development of Flat Plate Collector With Plastic Transparent Insulation and Low-Cost Overheating Protection System
,”
Appl. Energy
,
133
, pp.
206
223
.
14.
Cerón
,
J. F.
,
Pérez-García
,
J.
,
Solano
,
J. P.
,
García
,
A.
, and
Herrero-Martín
,
R.
,
2015
, “
A Coupled Numerical Model for Tube-on-Sheet Flat-Plate Solar Liquid Collectors. Analysis and Validation of the Heat Transfer Mechanisms
,”
Appl. Energy
,
140
, pp.
275
287
.
15.
Oliva
,
A.
,
Costa
,
M.
, and
Segarra
,
C. D.
,
1991
, “
Numerical Simulation of Solar Collectors: The Effect of Nonuniform and Nonsteady State the Boundary Conditions
,”
Sol. Energy
,
47
(
5
), pp.
359
373
.
16.
Cristofari
,
C.
,
Notton
,
G.
,
Poggi
,
P.
, and
Louche
,
A.
,
2002
, “
Modelling and Performance of a Copolymer Solar Water Heating Collector
,”
Sol. Energy
,
72
(
2
), pp.
99
112
.
17.
Al Imam
,
M. F. I.
,
Beg
,
R. A.
,
Rahman
,
M. S.
, and
Khan
,
M. Z. H.
,
2016
, “
Performance of PVT Solar Collector With Compound Parabolic Concentrator and Phase Change Materials
,”
Energy Build.
,
113
, pp.
139
144
.
18.
Meteonorm, 2014, “Global Meteorological Database,” Version 7, METEOTEST AG, Bern, Switzerland/Swiss Federal Office of Energy, Bern, Switzerland.
19.
Ibrahim
,
O.
,
Fardoun
,
F.
,
Younes
,
R.
, and
Gualous
,
H. L.
,
2014
, “
Optimal Management Proposal for Hybrid Water Heating System
,”
Energy Build.
,
75
, pp.
342
357
.
You do not currently have access to this content.