In this study, a new model for intumescent coatings is developed including the radiation transfer equation. So, one of the important features of this model is to give the insight of the radiative heat transfer in intumescent coating during expansion. In addition, the model equations are derived into a new coordinate system by introducing the expansion effect into the corresponding parameters. Consequently, the numerical results can be carried out by using a fixed grid system. The numerical results show that the radiative heat transfer near the exposed coating surface cannot be well simulated by the model of thermal radiation conductivity, which is widely used in the previous studies. So, it is suggested that the radiative heat transfer in the expanded char region should be formulated by a more considerate model. In addition, several parameters of coating thermal properties (thermal conductivity, extinction coefficient, and albedo) are tested and investigated under a radiant heat source. In addition to the transient response, the effects of these coating properties on the quasi steady results are also discussed. It is found that the thermal conductivity and the extinction coefficient in the expanded char region both dominate the coating performance. For the thermal properties of virgin coating, the thermal conductivity may have significant effect when the coating has large incomplete pyrolysis (expansion) region, while the extinction coefficient has little influence. Besides, the thermal conductivity and the albedo of virgin coating both alter the heating time to initial expansion but in different mechanisms.

References

1.
Weil
,
E. D.
,
2011
, “
Fire-Protective and Flame-Retardant Coatings—A State-of-the-Art Review
,”
J. Fire Sci.
,
29
(3), pp.
259
296
.
2.
Underwriters Laboratories, Inc.
,
2011
, “
Standard for Safety for Rapid Rise Fire Tests of Protection Material for Structural Steel
,” 4th ed., Underwriters Laboratories, Northbrook, IL, Standard No. UL 1709.
3.
Fry
,
Z. S.
,
2014
, “
A Laboratory Scale Study of Intumescent Coatings for Protection of Building Structure Members From Fires
,”
Master's thesis
, Case Western Reserve University, Cleveland, OH.
4.
Zhang
,
F.
,
Zhang
,
J.
, and
Wang
,
Y.
,
2007
, “
Modeling Study on the Combustion of Intumescent Fire-Retardant Polypropylene
,”
Express Polym. Lett.
,
1
(
3
), pp.
157
165
.
5.
Koo
,
J. H.
,
1997
, “
Thermal Characteristics Comparison of Two Fire Resistant Materials
,”
J. Fire Sci.
,
15
(
3
), pp.
203
221
.
6.
Mesquita
,
L. M. R.
,
Piloto
,
P. A. G.
,
Vaz
,
M. A. P.
, and
Pinto
,
T. M. G.
,
2009
, “
Decomposition of Intumescent Coatings: Comparison Between a Numerical Method and Experimental Results
,”
Acta Polytech.
,
49
(1), pp.
60
65
.
7.
Koo
,
J. H.
,
1998
, “
Thermal Characterization of a Ceramic Intumescent Material
,”
Fire Technol.
,
34
(
1
), pp.
59
71
.
8.
Wang
,
Y.
,
Goransson
,
U.
,
Holmstedt
,
G.
, and
Omrane
,
A.
,
2005
, “
A Model for Prediction of Temperature in Steel Structure Protected by Intumescent Coating, Based on Tests in the Cone Calorimeter
,”
Fire Saf. Sci.
,
8
, pp.
235
246
.
9.
Calabrese
,
L.
,
Bozzoli
,
F.
,
Bochicchio
,
G.
,
Tessadri
,
B.
,
Vocale
,
P.
, and
Rainieri
,
S.
,
2015
, “
Parameter Estimation Approach to the Thermal Characterization of Intumescent Fire Retardant Paints
,”
J. Phys.: Conf. Ser.
,
655
, p. 012048.
10.
Griffin
,
G. J.
,
Bicknell
,
A. D.
, and
Brown
,
T. J.
,
2005
, “
Studies on the Effect of Atmospheric Oxygen Content on the Thermal Resistance of Intumescent, Fire-Retardant Coatings
,”
J. Fire Sci.
,
23
(
4
), pp.
303
328
.
11.
Anderson
,
C. E.
, Jr.
, and
Wauters
,
D. K.
,
1984
, “
A Thermodynamic Heat Transfer Model for Intumescent Systems
,”
Int. J. Eng. Sci.
,
22
(
7
), pp.
881
889
.
12.
Chaboki
,
A.
,
Kneer
,
M. J.
,
Schneider
,
M. E.
, and
Koo
,
J. H.
,
1991
, “
Experimental and Numerical Results for Thermo-Physical Properties and Thermal Response of a Fire-Retardant Polymer
,” ASME Experimental/Numerical Heat Transfer in Combustion and Phase Change Conference.
13.
Henderson
,
J. B.
, and
Wiecek
,
T. E.
,
1987
, “
A Mathematical Model to Predict the Thermal Response of Decomposing, Expanding Polymer Composites
,”
J. Compos. Mater.
,
21
(
4
), pp.
373
393
.
14.
Buckmaster
,
J.
,
Anderson
,
C. E.
, and
Nachman
,
A.
,
1986
, “
A Model for Intumescent Paints
,”
Int. J. Eng. Sci.
,
24
(
3
), pp.
263
276
.
15.
Shih
,
Y. C.
,
Cheung
,
F. B.
, and
Koo
,
J. H.
,
1998
, “
Theoretical Modeling of Intumescent Fire-Retardant Materials
,”
J. Fire Sci.
,
16
(
1
), pp.
46
71
.
16.
Di
Blasi
,
C.
,
2004
, “
Modeling the Effects of High Radiative Heat Fluxes on Intumescent Material Decomposition
,”
J. Anal. Appl. Pyrolysis
,
71
(
2
), pp.
721
737
.
17.
Griffin
,
G. J.
,
2010
, “
The Modeling of Heat Transfer across Intumescent Polymer Coatings
,”
Fire Saf. J.
,
28
(
3
), pp.
249
277
.
18.
Zhang
,
Y.
,
Wang
,
Y. C.
,
Bailey
,
C. G.
, and
Taylor
,
A. P.
,
2012
, “
Global Modelling of Fire Protection Performance of Intumescent Coating Under Different Cone Calorimeter Heating Conditions
,”
Fire Saf. J.
,
50
, pp.
51
62
.
19.
Staggs
,
J. E. J.
,
2010
, “
Thermal Conductivity Estimates of Intumescent Chars by Direct Numerical Simulation
,”
Fire Saf. J.
,
45
(
4
), pp.
228
237
.
20.
Cirpici
,
B. K.
,
Wang
,
Y. C.
, and
Rogers
,
B.
,
2016
, “
Assessment of the Thermal Conductivity of Intumescent Coating Sin Fire
,”
Fire Saf. J.
,
81
, pp.
74
84
.
21.
Hsu
,
S.-Y.
,
Tien
,
J. S.
,
Fumiaki
Takahashi
, and
Olson
,
S.
,
2011
, “
Modeling Heat Transfer in Thin Fire Blanket Materials Under High External Heat Fluxes
,”
Fire Saf. Sci.,
10
, pp.
973
986
.
22.
Hsu
,
P. F.
, and
Howell
,
J. R.
,
1992
, “
Measurements of Thermal Conductivity and Optical Properties of Partially Stabilized Zirconia
,”
Exp. Heat Transfer
,
5
(
4
), pp.
293
313
.
23.
Staggs
,
J. E. J.
,
2011
, “
A Reappraisal of Convection Heat Transfer in the Cone Calorimeter
,”
Fire Saf. J.
,
46
(
3
), pp.
125
131
.
24.
Staggs
,
J. E. J.
, and
Phylaktou
,
H. N.
,
2008
, “
The Effects of Emissivity on the Performance of Steel in Furnace Tests
,”
Fire Saf. J.
,
43
(
1
), pp.
1
10
.
25.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
, 2nd ed.,
Academic Press
,
San Diego, CA
, p.
498
.
You do not currently have access to this content.