The present study examines the flow field and heat transfer inside a sessile droplet on oil-impregnated surface when subjected to a small temperature difference at the droplet–oil interface. Temperature and flow fields inside the droplet are predicted and the flow velocities predicted are validated through the data obtained from a particle image velocimetry (PIV). Several images of droplets in varying sizes are analyzed and the droplet geometric features and experimental conditions are incorporated in the simulations. A polycarbonate wafer is used to texture the surface via incorporating a solvent-induced crystallization method. Silicon oil is used for impregnation of the textured surfaces. It is found that two counter-rotating circulation cells are formed in the droplet because of the combined effect of the Marangoni and buoyant currents on the flow field. A new dimensionless number (Merve number (MN)) is introduced to assess the behavior of the Nusselt and the Bond numbers with the droplet size. The Merve number represents the ratio of the gravitational force over the surface tension force associated with the sessile droplet and it differs from the Weber number. The Nusselt number demonstrates three distinct behaviors with the Merve number; in which case, the Nusselt number increases sharply for the range 0.8 ≤ MN ≤ 1. The Bond number increases with increasing the Merve number, provided that its values remain less than unity, which indicates the Marangoni current is dominant in the flow field.

References

1.
Shirtcliffe
,
N. J.
,
McHale
,
G.
,
Newton
,
M. I.
,
Chabrol
,
G.
, and
Perry
,
C. C.
,
2004
, “
Dual‐Scale Roughness Produces Unusually Water-Repellent Surfaces
,”
Adv. Mater.
,
16
(
21
), pp.
1929
1932
.
2.
Hwang
,
H. S.
,
Lee
,
S. B.
, and
Park
,
I.
,
2010
, “
Fabrication of Raspberry-Like Superhydrophobic Hollow Silica Particles
,”
Mater. Lett.
,
64
(
20
), pp.
2159
2162
.
3.
Huang
,
Y.-H.
,
Wu
,
J.-T.
, and
Yang
,
S.-Y.
,
2011
, “
Direct Fabricating Patterns Using Stamping Transfer Process With PDMS Mold of Hydrophobic Nanostructures on Surface of Micro-Cavity
,”
Microelectron. Eng.
,
88
(
6
), pp.
849
854
.
4.
Yang
,
T.
,
Tian
,
H.
, and
Chen
,
Y.
,
2009
, “
Preparation of Superhydrophobic Silica Films With Honeycomb-Like Structure by Emulsion Method
,”
J. Sol-Gel Sci. Technol.
,
49
(
2
), pp.
243
246
.
5.
Kinoshita
,
H.
,
Ogasahara
,
A.
,
Fukuda
,
Y.
, and
Ohmae
,
N.
,
2010
, “
Superhydrophobic/Superhydrophilic Micropatterning on a Carbon Nanotube Film Using a Laser Plasma-Type Hyperthermal Atom Beam Facility
,”
Carbon
,
48
(
15
), pp.
4403
4408
.
6.
Latthe
,
S. S.
,
Imai
,
H.
,
Ganesan
,
V.
, and
Rao
,
A. V.
,
2009
, “
Superhydrophobic Silica Films by Sol—Gel Co-Precursor Method
,”
Appl. Surf. Sci.
,
256
(
1
), pp.
217
222
.
7.
Ma
,
M.
,
Mao
,
Y.
,
Gupta
,
M.
,
Gleason
,
K. K.
, and
Rutledge
,
G. C.
,
2005
, “
Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition
,”
Macromolecules
,
38
(
23
), pp.
9742
9748
.
8.
Xia
,
Z.
,
Yonggang
,
G.
,
Pingyu
,
Z.
,
Zhishen
,
W.
, and
Zhijun
,
Z.
,
2010
, “
Superhydrophobic CuO@Cu2S Nanoplate Vertical Arrays on Copper Surfaces
,”
Mater. Lett.
,
64
(
10
), pp.
1200
1203
.
9.
Ozbay
,
S.
,
Yuceel
,
C.
, and
Erbil
,
H. Y.
,
2015
, “
Improved Icephobic Properties on Surfaces With a Hydrophilic Lubricating Liquid
,”
ACS Appl. Mater. Interfaces
,
7
(
39
), pp.
22067
22077
.
10.
Schellenberger
,
F.
,
Xie
,
J.
,
Encinas
,
N.
,
Hardy
,
A.
,
Klapper
,
M.
,
Papadopoulos
,
P.
,
Butt
,
H.-J.
, and
Vollmer
,
D.
,
2015
, “
Direct Observation of Drops on Slippery Lubricant-Infused Surfaces
,”
Soft Matter
,
11
(
38
), pp.
7617
7626
.
11.
Smith
,
J. D.
,
Dhiman
,
R.
,
Anand
,
S.
,
Reza-Garduno
,
E.
,
Cohen
,
R. E.
,
McKinley
,
G. H.
, and
Varanasi
,
K. K.
,
2013
, “
Droplet Mobility on Lubricant-Impregnated Surfaces
,”
Soft Matter
,
9
(
6
), pp.
1772
1780
.
12.
Zheng
,
Z.
,
Zhou
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2016
, “
Numerical Investigation on Conjugate Heat Transfer of Evaporating Thin Film in a Sessile Droplet
,”
Int. J. Heat Mass Transfer
,
101
, pp.
10
19
.
13.
Moon
,
J. H.
,
Cho
,
M.
, and
Lee
,
S. H.
,
2016
, “
Dynamic Wetting and Heat Transfer Characteristics of a Liquid Droplet Impinging on Heated Textured Surfaces
,”
Int. J. Heat Mass Transfer
,
97
, pp.
308
317
.
14.
Jung
,
J.
,
Jeong
,
S.
, and
Kim
,
H.
,
2016
, “
Investigation of Single-Droplet/Wall Collision Heat Transfer Characteristics Using Infrared Thermometry
,”
Int. J. Heat Mass Transfer
,
92
, pp.
774
783
.
15.
Hsieh
,
S.-S.
, and
Luo
,
S.-Y.
,
2016
, “
Droplet Impact Dynamics and Transient Heat Transfer of a Micro Spray System for Power Electronics Devices
,”
Int. J. Heat Mass Transfer
,
92
, pp.
190
205
.
16.
Sadafi
,
M.
,
Jahn
,
I.
,
Stilgoe
,
A.
, and
Hooman
,
K.
,
2015
, “
A Theoretical Model With Experimental Verification for Heat and Mass Transfer of Saline Water Droplets
,”
Int. J. Heat Mass Transfer
,
81
, pp.
1
9
.
17.
Hays
,
R.
,
Maynes
,
D.
, and
Crockett
,
J.
,
2016
, “
Thermal Transport to Droplets on Heated Superhydrophobic Substrates
,”
Int. J. Heat Mass Transfer
,
98
, pp.
70
80
.
18.
Shi
,
Y.
,
Tang
,
G.
, and
Xia
,
H.
,
2015
, “
Investigation of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces and Liquid Condensate Adhesion on Slit and Plain Fins
,”
Int. J. Heat Mass Transfer
,
88
, pp.
445
455
.
19.
Al-Sharafi
,
A.
,
Yilbas
,
B. S.
,
Sahin
,
A. Z.
,
Ali
,
H.
, and
Al-Qahtani
,
H.
,
2016
, “
Heat Transfer Characteristics and Internal Fluidity of a Sessile Droplet on Hydrophilic and Hydrophobic Surfaces
,”
Appl. Therm. Eng.
,
108
, pp.
628
640
.
20.
Al-Sharafi
,
A.
,
Ali
,
H.
,
Yilbas
,
B. S.
,
Sahin
,
A. Z.
,
Khaled
,
M.
,
Al-Aqeeli
,
N.
, and
Al-Sulaiman
,
F.
,
2016
, “
Influence of Thermal Capillary and Buoyant Forces on Flow Characteristics in a Droplet on Hydrophobic Surface
,”
Int. J. Therm. Sci.
,
102
, pp.
239
253
.
21.
Yao
,
X.
,
Hu
,
Y.
,
Grinthal
,
A.
,
Wong
,
T.-S.
,
Mahadevan
,
L.
, and
Aizenberg
,
J.
,
2013
, “
Adaptive Fluid-Infused Porous Films With Tunable Transparency and Wettability
,”
Nat. Mater.
,
12
(
6
), pp.
529
534
.
22.
Mahadevan
,
L.
, and
Pomeau
,
Y.
,
1999
, “
Rolling Droplets
,”
Phys. Fluids
,
11
(
9
), pp.
2449
2453
.
23.
Tam
,
D.
,
von Arnim
,
V.
,
McKinley
,
G.
, and
Hosoi
,
A.
,
2009
, “
Marangoni Convection in Droplets on Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
624
, pp.
101
123
.
24.
Lu
,
G.
,
Duan
,
Y.-Y.
,
Wang
,
X.-D.
, and
Lee
,
D.-J.
,
2011
, “
Internal Flow in Evaporating Droplet on Heated Solid Surface
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4437
4447
.
25.
Zografos
,
A. I.
,
Martin
,
W. A.
, and
Sunderland
,
J. E.
,
1987
, “
Equations of Properties as a Function of Temperature for Seven Fluids
,”
Comput. Methods Appl. Mech. Eng.
,
61
(
2
), pp.
177
187
.
26.
COMSOL,
2016
, “
The Platform for Physics-Based Modeling and Simulation
,” COMSOL Multiphysics, Burlington, MA, accessed Apr. 12, 2017, http://www.comsol.com/comsol-multiphysics
27.
Marshall
,
J. S.
, and
Palmer
,
W. M. K.
,
1948
, “
The Distribution of Raindrops With Size
,”
J. Meteorol.
,
5
(
4
), pp.
165
166
.
28.
Yilbas
,
B.
,
Ali
,
H.
,
Al-Aqeeli
,
N.
,
Khaled
,
M.
,
Abu-Dheir
,
N.
, and
Varanasi
,
K.
,
2016
, “
Solvent‐Induced Crystallization of a Polycarbonate Surface and Texture Copying by Polydimethylsiloxane for Improved Surface Hydrophobicity
,”
J. Appl. Polym. Sci.
,
133
(
22
), pp. 43467–43479.
29.
Adeyinka
,
O.
, and
Naterer
,
G.
,
2005
, “
Experimental Uncertainty of Measured Entropy Production With Pulsed Laser PIV and Planar Laser Induced Fluorescence
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1450
1461
.
30.
DANTEC DYNAMICS,
2016
, “Particle Image Velocimetry,” DANTEC DYNAMICS, Skovlunde, Denmark, accessed Apr. 12, 2017, http://www.dantecdynamics.com/particle-image-velocimetry
31.
Lafuma
,
A.
, and
Quéré
,
D.
,
2011
, “
Slippery Pre-Suffused Surfaces
,”
Europhys. Lett.
,
96
(
5
), p.
56001
.
32.
Shirtcliffe
,
N. J.
,
McHale
,
G.
, and
Newton
,
M. I.
,
2011
, “
The Superhydrophobicity of Polymer Surfaces: Recent Developments
,”
J. Polym. Sci. Part B: Polym. Phys.
,
49
(
17
), pp.
1203
1217
.
33.
Carré
,
A.
,
Gastel
,
J.-C.
, and
Shanahan
,
M. E.
,
1996
, “
Viscoelastic Effects in the Spreading of Liquids
,”
Nature
,
379
, pp. 432–434.
34.
Shanahan
,
M.
, and
Carre
,
A.
,
1995
, “
Viscoelastic Dissipation in Wetting and Adhesion Phenomena
,”
Langmuir
,
11
(
4
), pp.
1396
1402
.
35.
Kang
,
K. H.
,
Lim
,
H. C.
,
Lee
,
H. W.
, and
Lee
,
S. J.
,
2013
, “
Evaporation-Induced Saline Rayleigh Convection Inside a Colloidal Droplet
,”
Phys. Fluids
,
25
(
4
), p.
042001
.
36.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
37.
Morsi
,
S.
, and
Alexander
,
A.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.
38.
Vand
,
V.
,
1945
, “
Theory of Viscosity of Concentrated Suspensions
,”
Nature
,
155
(
3934
), pp.
364
365
.
39.
Halliday
,
D.
,
Resnick
,
R.
, and
Walker
,
J.
,
2005
,
Fundamentals of Physics
, 7th ed.,
Wiley
,
New York
.
You do not currently have access to this content.