Closed-loop pulsating heat pipes (CLPHPs) are a new type of two-phase heat transfer devices that can transfer considerable heat in a small space via two-phase vapor and liquid pulsating flow and work with various types of two-phase instabilities so the operating mechanism of CLPHP is not well understood. In this work, two CLPHPs, made of Pyrex, were manufactured to observe and investigate the flow regime that occurs during the operation of CLPHP and thermal performance of the device under different laboratory conditions. In general, various working fluids were used in filling ratios of 40%, 50%, and 60% in horizontal and vertical modes to investigate the effect of thermo-physical parameters, filling ratio, nanoparticles, gravity, CLPHP structure, and input heat flux on the thermal performance of CLPHP. The results indicate that three types of flow regime may be observed given laboratory conditions. Each flow regime exerts a different effect on the thermal performance of the device. There is an optimal filling ratio for each working fluid. The increased number of turns in CLPHP generally improves the thermal performance of the system reducing the effect of the type of the working fluid on the aforementioned performance. The adoption of copper nanoparticles, which positively affect fluid motion, decreases the thermal resistance of the system as much as 6.06–42.76% depending on laboratory conditions. Moreover, gravity brings about positive changes in the flow regime decreasing thermal resistance as much as 32.13–52.58%.

References

1.
Smyrnov
,
G. F.
, and
Savchenkov
,
G. A.
,
1971
, “
Pulsating Heat Pipe
,” USSR Patent No. 504065.
2.
Akachi
,
H.
,
1990
, “
Structure of a Heat Pipe
,” Actronics Kabushiki Kaisha, Isehara, JP, U.S. Patent No.
US4921041 A
.
3.
Song
,
Y.
, and
Xu
,
J.
,
2009
, “
Chaotic Behavior of Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
2932
2941
.
4.
Mehta
,
B.
, and
Khandekar
,
S.
,
2014
, “
Taylor Bubble-Train Flows and Heat Transfer in the Context of Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
79
, pp.
279
290
.
5.
Tang
,
B.
,
Wong
,
T.
, and
Ooi
,
K.
,
2001
, “
Closed-Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
21
(
18
), pp.
1845
1862
.
6.
Qu
,
W.
, and
Ma
,
T. Z.
,
2002
, “
Experimental Investigation on Flow and Heat Transfer of Pulsating Heat Pipe
,”
J. Eng. Thermophys.
,
23
(
5
), pp.
596
598
.
7.
Khandekar
,
S.
,
Gautam
,
A. P.
, and
Sharma
,
P. K.
,
2009
, “
Multiple Quasi-Steady States in a Closed Loop Pulsating Heat Pipe
,”
Int. J. Therm. Sci.
,
48
(
3
), pp.
535
546
.
8.
Mameli
,
M.
, and
Khandekar
,
S.
,
2014
, “
Local Heat Transfer Measurement and Thermo-Fluid Characterization of a Pulsating Heat Pipe
,”
Int. J. Therm. Sci.
,
75
, pp.
140
152
.
9.
Spinato
,
G.
,
Borhani
,
N.
,
Dentremont
,
D. P.
, and
Thome
,
J. R.
,
2015
, “
Time-Strip Visualization and Thermo-Hydrodynamics in a Closed Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
78
, pp.
364
372
.
10.
Borgmeyer
,
B.
, and
Ma
,
H.
,
2007
, “
Experimental Investigation of Oscillating Motions in a Flat Plate Pulsating Heat Pipe
,”
J. Thermophys. Heat Transfer
,
21
(
2
), pp.
405
409
.
11.
Hosoda
,
M.
,
Nishio
,
S.
, and
Shirakashi
,
R.
, 1999, “
Study of Meandering Closed-Loop Heat-Transport Device: Vapor-Plug Propagation Phenomena
,”
JSME Int. J. Ser. B
,
42
(
4
), pp.
737
744
.
12.
Khandekar
,
S.
,
Dollinger
,
N.
, and
Groll
,
M.
,
2003
, “
Understanding Operational Regimes of Closed Loop Pulsating Heat Pipes: An Experimental Study
,”
Appl. Therm. Eng.
,
23
(
6
), pp.
707
719
.
13.
Yang
,
H.
,
Khandekar
,
S.
, and
Groll
,
M.
, 2008, “
Operational Limit of Closed Loop Pulsating Heat Pipes
,”
Appl. Therm. Eng.
,
28
(
1
), pp.
49
59
.
14.
Charoensawan
,
P.
, and
Terdtoon
,
P.
,
2008
, “
Thermal Performance of Horizontal Closed-Loop OHPs
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
460
466
.
15.
Gamit
,
H.
,
More
,
V.
,
Mukund
,
B.
, and
Mehta
,
H.
,
2015
, “
Experimental Investigations on Pulsating Heat Pipe
,”
Energy Proc.
,
75
, pp.
3186
3191
.
16.
Khandekar
,
S.
,
2010
, “
Pulsating Heat Pipe Based Heat Exchangers
,”
21st International Symposium on Transport Phenomena
(
ISTP
), Kaohsiung, Taiwan, Nov. 2–5, pp.
2
5
.
17.
Yin
,
D.
,
Rajab
,
H.
, and
Ma
,
H. B.
,
2014
, “
Theoretical Analysis of Maximum Filling Ratio in an Oscillating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
74
, pp.
353
357
.
18.
Charoensawan
,
P.
,
Khandekar
,
S.
,
Groll
,
M.
, and
Terdtoon
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes—Part A: Parametric Experimental Investigations
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2009
2020
.
19.
Karthikeyan
, V
. K.
,
Ramachandran
,
K.
,
Pillai
,
B. C.
, and
Solomon
,
A. B.
,
2013
, “
Effect of Number of Turns on the Temperature Pulsations and Corresponding Thermal Performance of Pulsating Heat Pipe
,”
J. Enhanced Heat Transfer
,
20
(
5
), pp.
443
452
.
20.
Zhang
,
Y.
, and
Faghri
,
A.
,
2003
, “
Oscillatory Flow in Pulsating Heat Pipes With Arbitrary Numbers of Turns
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
340
347
.
21.
Maezawa
,
S.
,
Izumi
,
T.
, and
Gi
,
K.
,
1997
, “
Experimental Chaos in Oscillating Capillary Tube Heat Pipes
,”
10th International Heat Pipe Conference
(IHPC), Stuttgart, Germany, Sept. 22–25, pp. 56–61.
22.
Liu
,
X.
,
Chen
,
Y.
, and
Shi
,
M.
,
2013
, “
Dynamic Performance Analysis on Start-Up of Closed-Loop Pulsating Heat Pipes (CLPHPs)
,”
Int. J. Therm. Sci.
,
65
, pp.
224
233
.
23.
Thompson
,
S. M.
,
Hathaway
,
A. A.
,
Smoot
,
C. D.
,
Wilson
,
C. A.
,
Ma
,
H. B.
,
Young
,
R. M.
,
Greenberg
,
L.
,
Osick
,
B. R.
,
Campen
,
S. V.
,
Morgan
,
B. C.
,
Sharar
,
D.
, and
Jankowski
,
N.
,
2011
, “
Robust Thermal Performance of a Flat-Plate Oscillating Heat Pipe During High-Gravity Loading
,”
ASME J. Heat Transfer
,
133
(
10
), p.
104504
.
24.
Mameli
,
M.
,
Araneo
,
L.
,
Filippeschi
,
S.
,
Marelli
,
L.
,
Testa
,
R.
, and
Marengo
,
M.
,
2014
, “
Thermal Response of a Closed Loop Pulsating Heat Pipe Under a Varying Gravity Force
,”
Int. J. Therm. Sci.
,
80
(
1
), pp.
11
22
.
25.
Jagtap
,
H. B.
, and
Wankhede
,
U. S.
,
2015
, “
Review on Thermal Performance of Oscillating Heat Pipe With Different Working Fluids
,”
Int. J. Appl. Eng. Res.
,
10
(
4
), pp.
9335
9353
.
26.
Rittidech
,
S.
,
Terdtoon
,
P.
,
Tantakom
,
P.
,
Murakami
,
M.
, and
Jompakdee
,
W.
,
2000
, “
Effect of Inclination Angles, Evaporator Section Lengths and Working Fluid Properties on Heat Transfer Characteristics of a Closed-End OHP
,”
6th International Heat-Pipe Symposium
, Chiang Mai, Thailand, Nov. 5–9, pp. 413–421.
27.
Schneider
,
M.
,
Khandekar
,
S.
,
Schafer
,
P.
,
Kulenovic
,
R.
, and
Groll
,
M.
,
2000
, “
Visualization of Thermo Fluid-Dynamic Phenomena in Flat Plate Closed Loop Pulsating Heat Pipes
,”
6th International Heat Pipe Symposium
, Chiang Mai, Thailand, Nov. 5–9, pp. 235–247.
28.
Zhang
,
X. M.
,
2004
, “
Experimental Study of a Pulsating Heat Pipe Using FC-72, Ethanol, and Water as Working Fluids
,”
Exp. Heat Transfer
,
17
(
1
), pp.
47
67
.
29.
Shafii
,
M.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2002
, “
Analysis of Heat Transfer in Unlooped and Looped Pulsating Heat Pipes
,”
Int. J. Numer. Methods Heat Fluid Flow
,
12
(
5
), pp.
585
609
.
30.
Groll
,
M.
, and
Khandekar
,
S.
,
2002
, “
Pulsating Heat Pipes: A Challenge and Still Unsolved Problem in Heat Pipe Science
,”
Arch. Thermodyn.
,
23
(
4
), pp.
17
28
.
31.
Yang
,
K.
,
Cheng
,
Y.
,
Liu
,
M.
, and
Shyu
,
J.
,
2015
, “
Micro Pulsating Heat Pipes With Alternate Microchannel Widths
,”
Appl. Therm. Eng.
,
83
, pp.
131
138
.
32.
Choi
,
S.
, and
Eastman
,
J.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME Publ. Fed.
,
231
, pp.
99
106
.
33.
Wang
,
S.
,
Lin
,
Z.
,
Zhang
,
W.
, and
Chen
,
J.
,
2009
, “
Experimental Study on Pulsating Heat Pipe With Functional Thermal Fluids
,”
Int. J. Heat Mass Transfer
,
52
(
21
), pp.
5276
5279
.
34.
Qu
,
J.
,
Wu
,
H. Y.
, and
Cheng
,
P.
,
2010
, “
Thermal Performance of an Oscillating Heat Pipe With Al2O3–Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
(
2
), pp.
111
115
.
35.
Qu
,
J.
, and
Wu
,
H.
, 2011, “
Thermal Performance Comparison of Oscillating Heat Pipes With SiO2/Water and Al2O3/Water Nanofluids
,”
Int. J. Therm. Sci.
,
50
(
10
), pp.
1954
1962
.
36.
Ji
,
Y.
,
Ma
,
H.
,
Su
,
F.
, and
Wang
,
G.
, 2011, “
Particle Size Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
724
727
.
37.
Ma
,
H.
,
Wilson
,
C.
,
Borgmeyer
,
B.
,
Park
,
K.
,
Yu
,
Q.
,
Choi
,
S. U. S.
, and
Tirumala
,
M.
, 2006, “
Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Appl. Phys. Lett.
,
88
(
14
), pp.
1
3
.
38.
Ma
,
H.
,
Wilson
,
C.
,
Park
,
K.
,
Yu
,
Q.
,
Choi
,
S. U. S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1213
1216
.
39.
Zhao
,
N.
,
Zhao
,
D.
, and
Ma
,
H.
,
2013
, “
Experimental Investigation of Magnetic Field Effect on the Magnetic Nanofluid Oscillating Heat Pipe
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
11005
.
40.
Lutfor Rahman
,
M.
,
Mira
,
F.
,
Nawrin
,
S.
,
Sultan
,
R. A.
, and
Ali
,
M.
,
2015
, “
Effect of Fin and Insert on the Performance Characteristics of Open Loop Pulsating Heat Pipe (OLPHP)
,”
Proc. Eng.
,
105
, pp.
105
112
.
41.
Lutfor Rahman
,
M.
,
Sultan
,
R. A.
,
Islam
,
T.
,
Hasan
,
N. M.
, and
Ali
,
M.
,
2015
, “
An Experimental Investigation on the Effect of Fin in the Performance of Closed Loop Pulsating Heat Pipe (CLPHP)
,”
Proc. Eng.
,
105
, pp.
137
144
.
42.
Lutfor Rahman
,
M.
,
Mira
,
F.
,
Nawrin
,
S.
,
Sultan
,
R. A.
, and
Ali
,
M.
,
2015
, “
Effect of Fin and Insert on the Performance Characteristics of Close Loop Pulsating Heat Pipe (CLPHP)
,”
Proc. Eng.
,
105
, pp.
129
136
.
43.
Zuo
,
Z.
, and
North
,
M.
,
2000
, “
Miniature High Heat Flux Heat Pipes for Cooling of Electronics
,” SEE, pp.
573
579
.
44.
Wong
,
T.
,
Tong
,
B.
,
Lim
,
S.
, and
Ooi
,
K.
,
1999
, “
Theoretical Modeling of Pulsating Heat Pipe
,”
11th International Heat Pipe Conference
(
IHPC
), Tokyo, Japan, Sept. 12–16, pp.
159
163
.
45.
Yang
,
X. S.
, and
Luan
,
T.
,
2012
, “
Modeling of a Pulsating Heat Pipe and Startup Asymptotics
,”
Proc. Comput. Sci.
,
9
, pp.
784
791
.
46.
Burban
,
G.
,
Ayel
,
V.
,
Alexandr
,
A.
,
Lagonotte
,
P.
,
Bertin
,
Y.
, and
Romestant
,
C.
,
2013
, “
Experimental Investigation of a Pulsating Heat Pipe for Hybrid Vehicle Applications
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
94
103
.
47.
Zhu
,
L.
,
Liu
,
J.
,
Wang
,
B.
, and
Wang
,
Z. H.
,
2007
,
Principles of Chemical Engineering
,
Petroleum Industry Press
,
Beijing, China
, pp.
521
522
.
You do not currently have access to this content.