The most popular methods used for solving transient heat conduction problems, like finite element method (FEM) and boundary element method (BEM), require discretization of the domain or the boundary. The discretization problem escalates for unsteady issues, because an iterative process is required to solve them. An alternative to avoid the mentioned problem is parametric integral equations systems (PIESs), which do not require classical discretization of the boundary and the domain, while being numerically solved. PIES have been previously used with success to solve steady-state problems. Moreover, they have been recently tested also with success for transient heat conduction problems, without internal heat sources. The purpose of this paper is to generalize PIES based on analytical modification of classical boundary integral equation (BIE) for transient heat conduction with internal heat source and nonuniform rational basis spline (NURBS) for boundary modeling. The obtained generalization of PIES is tested on examples, mostly with defined exact solution.

References

1.
Wu
,
J.
,
Gui
,
D.
,
Liu
,
D.
, and
Feng
,
X.
,
2015
, “
The Characteristic Variational Multiscale Method for Time Dependent Conduction–Convection Problems
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
58
68
.
2.
Zhang
,
L.
,
Zhao
,
J. M.
, and
Liu
,
L. H.
,
2016
, “
A New Stabilized Finite Element Formulation for Solving Radiative Transfer Equation
,”
ASME J. Heat Transfer
,
138
(
6
), p. 064502.
3.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Clarendon Press
,
Oxford, UK
.
4.
Brian
,
P. L. T.
,
1961
, “
A Finite-Difference Method of High-Order Accuracy for the Solution of Three-Dimensional Transient Heat Conduction Problems
,”
Am. Inst. Chem. Eng. J.
,
7
(
3
), pp.
367
370
.
5.
Wang
,
Y.
,
Qin
,
Y.
, and
Zhang
,
J.
,
2011
, “
Application of New Finite Volume Method (FVM) on Transient Heat Transferring
,”
Information Computing and Applications
(Communications in Computer and Information Science, Vol. 105), Springer, Berlin, pp.
109
116
.
6.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2000
,
The Finite Element Method
, Vol.
1–3
,
Butterworth
,
Oxford, UK
.
7.
Bruch
,
J. C.
, and
Zyvoloski
,
G.
,
1974
, “
Transient Two-Dimensional Heat Conduction Problems Solved by the Finite Element Method
,”
Int. J. Numer. Methods
,
8
(
3
), pp.
481
494
.
8.
Lewis
,
R. W.
,
Morgan
,
K.
,
Thomas
,
H. R.
, and
Seetharamu
,
K.
,
1996
,
The Finite Element Method in Heat Transfer Analysis
,
Wiley
,
Chichester, UK
.
9.
Brebbia
,
C. A.
,
Telles
,
J. C.
, and
Wrobel
,
L. C.
,
1984
,
Boundary Element Techniques, Theory and Applications in Engineering
,
Springer
,
New York
.
10.
Wrobel
,
L. C.
, and
Brebbia
,
C. A.
,
1979
,
The Boundary Element Method for Steady-State and Transient Heat Conduction
,
Pineridge Press
,
Swansea, UK
.
11.
Tanaka
,
M.
,
Matsumoto
,
T.
, and
Yang
,
Q. F.
,
1994
, “
Time-Stepping Boundary Element Method Applied to 2-D Transient Heat Conduction Problems
,”
Appl. Math. Modell.
,
18
(
10
), pp.
569
576
.
12.
Majchrzak
,
E.
,
2001
,
Boundary Element Method in Heat Transfer
,
Technical University of Czestochowa
,
Czestochowa, Poland
(in Polish).
13.
Sutradhar
,
A.
,
Paulino
,
G. H.
, and
Gray
,
L. J.
,
2002
, “
Transient Heat Conduction in Homogeneous and Non-Homogeneous Materials by the Laplace Transform Galerkin Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
26
(
2
), pp.
119
132
.
14.
Partridge
,
P. W.
,
Brebbia
,
C. A.
, and
Wrobel
,
L. C.
,
1992
,
The Dual Reciprocity Boundary Element Method
,
Computational Mechanics Publications
,
Southampton, UK
.
15.
Nowak
,
A. J.
,
1989
, “
The Multiple Reciprocity Method of Solving Transient Heat Conduction Problems
,”
Boundary Elements XI
, Vol.
2
,
Computational Mechanics Publications
,
Southampton, UK
.
16.
Yu
,
K. H.
,
Kadarman
,
A. H.
, and
Djojodihardjo
,
H.
,
2010
, “
Development and Implementation of Some BEM Variants—A Critical Review
,”
Eng. Anal. Boundary Elem.
,
34
(
10
), pp.
884
899
.
17.
Johansson
,
B. T.
, and
Lesnic
,
D.
,
2008
, “
A Method of Fundamental Solutions for Transient Heat Conduction
,”
Eng. Anal. Boundary Elem.
,
32
(
9
), pp.
697
703
.
18.
Kołodziej
,
J. A.
,
Mierzwiczak
,
M.
, and
Ciałkowski
,
M.
,
2010
, “
Application of the Method of Fundamental Solutions and Radial Basis Functions for Inverse Heat Source Problem in Case of Steady-State
,”
Int. Commun. Heat Mass Transfer
,
37
(
2
), pp.
121
124
.
19.
Mierzwiczak
,
M.
, and
Kołodziej
,
J. A.
,
2012
, “
Application of the Method of Fundamental Solutions With the Laplace Transformation for the Inverse Transient Heat Source Problem
,”
J. Theor. Appl. Mech.
,
50
(4), pp.
1011
1023
.
20.
Zieniuk
,
E.
,
2003
, “
Bézier Curves in the Modification of Boundary Integral Equations (BIE) for Potential Boundary-Values Problems
,”
Int. J. Solids Struct.
,
40
(
9
), pp.
2301
2320
.
21.
Zieniuk
,
E.
,
2003
, “
Hermite Curves in the Modification of Integral Equations for Potential Boundary-Value Problems
,”
Eng. Comput.
,
20
(
2
), pp.
112
128
.
22.
Zieniuk
,
E.
, and
Boltuc
,
A.
,
2006
, “
Bézier Curves in the Modeling of Boundary Geometry for 2D Boundary Problems Defined by Helmholtz Equation
,”
J. Comput. Acoust.
,
14
(
3
), pp.
353
367
.
23.
Zieniuk
,
E.
, and
Boltuc
,
A.
,
2006
, “
Non-Element Method of Solving 2D Boundary Problems Defined on Polygonal Domains Modeled by Navier Equation
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7939
7958
.
24.
Zieniuk
,
E.
,
2007
, “
Modelling and Effective Modification of Smooth Boundary Geometry in Boundary Problems Using B-Spline Curves
,”
Eng. Comput.
,
4
(
23
), pp.
39
48
.
25.
Bołtuć
,
A.
, and
Zieniuk
,
E.
,
2011
, “
Modeling Domains Using Bézier Surfaces in Plane Boundary Problems Defined by the Navier–Lame Equation With Body Forces
,”
Eng. Anal. Boundary Elem.
,
35
(
10
), pp.
1116
1122
.
26.
Zieniuk
,
E.
,
2013
,
Computational Method PIES for Solving Boundary Value Problems
,
Polish Scientific Publishers PWN
,
Warsaw, Poland
(in Polish).
27.
Zieniuk
,
E.
,
Sawicki
,
D.
, and
Bołtuć
,
A.
,
2014
, “
Parametric Integral Equations Systems in 2D Transient Heat Conduction Analysis
,”
Int. J. Heat Mass Transfer
,
78
, pp.
571
587
.
28.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book
, 2nd ed.,
Springer-Verlag
, Berlin.
29.
Foley
,
J.
,
van Dam
,
A.
,
Feiner
,
S.
,
Hughes
,
J.
, and
Phillips
,
R.
,
1994
,
Introduction to Computer Graphics
,
Addison-Wesley
,
Boston, MA
.
30.
Farin
,
G.
,
1990
,
Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide
,
Academic Press
,
New York
.
31.
Mortenson
,
M.
,
1985
,
Geometric Modelling
,
Wiley
,
New York
.
32.
Cody
,
W. J.
, and
Thacher
,
H. C.
, Jr.
,
1968
, “
Rational Chebyshev Approximations for Exponential Integral E1 (x)
,”
Math. J. Comput.
,
22
(
103
), pp.
641
649
.
33.
Gottlieb
,
D.
, and
Orszag
,
S. A.
,
1977
,
Numerical Analysis of Spectral Methods: Theory and Applications
,
SIAM
,
Philadelphia, PA
.
You do not currently have access to this content.