This work describes a novel technique for simultaneously determining local temperature and thickness of a heavily doped Si heater having a submicron width by using two-wavelength thermoreflectance microscopy. The doped silicon line heater, whose thickness and width are, respectively, 480 nm and 900 nm, is fabricated by conventional microfabrication techniques on a fused silica wafer. The full width at half maximum (FWHM) of the focused laser beam is measured to be 2.00 μm and 2.28 μm for green (λ = 516 nm) and red (λ = 640 nm) lasers, respectively. Because the heater width is narrower than the focused laser beam size, the reflected beam contains background information (i.e., reflection from the fused silica substrate) in addition to the thermoreflectance signal from the doped silicon heater. With precise knowledge of the laser beam size, heater width, and exact location of the laser beam spot on the heater, one can quantitatively model the reflectance. In reality, however, due to the difficulty of aligning the laser beam with respect to the submicron-wide Si heater, precise determination of local temperature from thermoreflectance signal is not easily attained. In the present study, instead of aligning the laser beam to the center of the submicron silicon heater, the probe laser horizontally scans over a region of the heater. By taking into account the size of the focused laser beam and the width of the doped silicon heater, it is possible to determine the absolute temperature of a local region of the heater from the measured reflectance during the scanning, even though the width of the heater line is only 39% of the size of the laser beam.

References

1.
Cahill
,
D. G.
,
Goodson
,
K.
, and
Majumdar
,
A.
,
2002
, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
223
241
.
2.
Jellison
,
G. E.
, Jr.
, and
Burke
,
H. H.
,
1986
, “
The Temperature Dependence of the Refractive Index of Silicon at Elevated Temperatures at Several Laser Wavelengths
,”
J. Appl. Phys.
,
60
(
2
), pp.
841
843
.
3.
Kempkens
,
H.
,
Byszewski
,
W. W.
,
Gregor
,
P. D.
, and
Lapatovich
,
W. P.
,
1990
, “
Measurements of Electrode Temperature Evolution by Laser Light Reflection
,”
J. Appl. Phys.
,
67
(
8
), pp.
3618
3624
.
4.
England
,
J. M. C.
,
Zissis
,
N.
,
Timans
,
P. J.
, and
Ahmed
,
H.
,
1991
, “
Time-Resolved Reflectivity Measurements of Temperature Distributions During Swept-Line Electron-Beam Heating of Silicon
,”
J. Appl. Phys.
,
70
(
1
), pp.
389
397
.
5.
Boebel
,
F. G.
, and
Möller
,
H.
,
1993
, “
Simultaneous In Situ Measurement of Film Thickness and Temperature by Using Multiple Wavelengths Pyrometric Interferometry (MWPI)
,”
IEEE Trans. Semicond. Manuf.
,
6
(
2
), pp.
112
118
.
6.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1998
, “
Short-Time-Scale Thermal Mapping of Microdevices Using a Scanning Thermoreflectance Technique
,”
ASME J. Heat Transfer
,
120
(
2
), pp.
306
313
.
7.
Tessier
,
G.
,
Holé
,
S.
, and
Fournier
,
D.
,
2001
, “
Quantitative Thermal Imaging by Synchronous Thermoreflectance With Optimized Illumination Wavelengths
,”
Appl. Phys. Lett.
,
78
(
16
), pp.
2267
2269
.
8.
Tessier
,
G.
,
Polignano
,
M. L.
,
Pavageau
,
S.
,
Filloy
,
C.
,
Fournier
,
D.
,
Cerutti
,
F.
, and
Mica
,
I.
,
2006
, “
Thermoreflectance Temperature Imaging of Integrated Circuits: Calibration Technique and Quantitative Comparison With Integrated Sensors and Simulations
,”
J. Phys. D: Appl. Phys.
,
39
(
19
), p.
4159
.
9.
Choi
,
W. J.
,
Ryu
,
S. Y.
,
Kim
,
J. K.
,
Kim
,
D. U.
,
Kim
,
G. H.
, and
Chang
,
K. S.
,
2013
, “
High-Speed Thermoreflectance Microscopy Using Charge-Coupled Device-Based Fourier-Domain Filtering
,”
Opt. Lett.
,
38
(
18
), pp.
3581
3584
.
10.
Kim
,
J.
,
Han
,
S.
,
Walsh
,
T.
,
Park
,
K.
,
Lee
,
B. J.
,
King
,
W. P.
, and
Lee
,
J.
,
2013
, “
Temperature Measurements of Heated Microcantilevers Using Scanning Thermoreflectance Microscopy
,”
Rev. Sci. Instrum.
,
84
(
3
), p.
034903
.
11.
Park
,
H.
,
Lee
,
B. J.
, and
Lee
,
J.
,
2014
, “
Note: Simultaneous Determination of Local Temperature and Thickness of Heated Cantilevers Using Two-Wavelength Thermoreflectance
,”
Rev. Sci. Instrum.
,
85
(
3
), p.
036109
.
12.
Grauby
,
S.
,
Dilhaire
,
S.
,
Jorez
,
S.
, and
Claeys
,
W.
,
2005
, “
Temperature Variation Mapping of a Microelectromechanical System by Thermoreflectance Imaging
,”
IEEE Electron. Device Lett.
,
26
(
2
), pp.
78
80
.
13.
Liu
,
Y.
, and
Mandelis
,
A.
,
2009
, “
Laser Optical and Photothermal Thermometry of Solids and Thin Films
,”
Radiometric Temperature Measurements: I. Fundamentals
, (Experimental Methods in the Physical Sciences, Vol. 42),
Z. M.
Zhang
,
B. K.
Tsai
, and
G.
Machin
, eds.,
Academic Press
,
Oxford, UK
, pp.
297
336
.
14.
Grauby
,
S.
,
Forget
,
B. C.
,
Holé
,
S.
, and
Fournier
,
D.
,
1999
, “
High Resolution Photothermal Imaging of High Frequency Phenomena Using a Visible Charge Coupled Device Camera Associated With a Multichannel Lock-In Scheme
,”
Rev. Sci. Instrum.
,
70
(
9
), pp.
3603
3608
.
15.
Ippolito
,
S. B.
,
Thorne
,
S. A.
,
Eraslan
,
M. G.
,
Goldberg
,
B. B.
,
Ünlü
,
M. S.
, and
Leblebici
,
Y.
,
2004
, “
High Spatial Resolution Subsurface Thermal Emission Microscopy
,”
Appl. Phys. Lett.
,
84
(
22
), pp.
4529
4531
.
16.
Grauby
,
S.
,
Salhi
,
A.
,
Rampnoux
,
J.-M.
,
Michel
,
H.
,
Claeys
,
W.
, and
Dilhaire
,
S.
,
2007
, “
Laser Scanning Thermoreflectance Imaging System Using Galvanometric Mirrors for Temperature Measurements of Microelectronic Devices
,”
Rev. Sci. Instrum.
,
78
(
7
), p.
074902
.
17.
Lee
,
J.
,
Beechem
,
T.
,
Wright
,
T. L.
,
Nelson
,
B. A.
,
Graham
,
S.
, and
King
,
W. P.
,
2006
, “
Electrical, Thermal, and Mechanical Characterization of Silicon Microcantilever Heaters
,”
J. Microelectromech. Syst.
,
15
(
6
), pp.
1644
1655
.
18.
Abel
,
M. R.
,
Wright
,
T. L.
,
King
,
W. P.
, and
Graham
,
S.
,
2007
, “
Thermal Metrology of Silicon Microstructures Using Raman Spectroscopy
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
2
), pp.
200
208
.
19.
Hsu
,
I.-K.
,
Pettes
,
M. T.
,
Aykol
,
M.
,
Chang
,
C.-C.
,
Hung
,
W.-H.
,
Theiss
,
J.
,
Shi
,
L.
, and
Cronin
,
S. B.
,
2011
, “
Direct Observation of Heat Dissipation in Individual Suspended Carbon Nanotubes Using a Two-Laser Technique
,”
J. Appl. Phys.
,
110
(
4
), p.
044328
.
20.
Cahill
,
D. G.
,
Braun
,
P. V.
,
Chen
,
G.
,
Clarke
,
D. R.
,
Fan
,
S.
,
Goodson
,
K. E.
,
Keblinski
,
P.
,
King
,
W. P.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Phillpot
,
S. R.
,
Pop
,
E.
, and
Shi
,
L.
,
2014
, “
Nanoscale Thermal Transport—II: 2003-2012
,”
Appl. Phys. Rev.
,
1
(
1
), p.
011305
.
21.
Kang
,
K.
,
Koh
,
Y. K.
,
Chiritescu
,
C.
,
Zheng
,
X.
, and
Cahill
,
D. G.
,
2008
, “
Two-Tint Pump-Probe Measurements Using a Femtosecond Laser Oscillator and Sharp-Edged Optical Filters
,”
Rev. Sci. Instrum.
,
79
(
11
), p.
114901
.
22.
Jigami
,
T.
,
Kobayashi
,
M.
,
Taguchi
,
Y.
, and
Nagasaka
,
Y.
,
2007
, “
Development of Nanoscale Temperature Measurement Technique Using Near-Field Fluorescence
,”
Int. J. Thermophys.
,
28
(
3
), pp.
968
979
.
23.
Goodson
,
K. E.
, and
Asheghi
,
M.
,
1997
, “
Near-Field Optical Thermometry
,”
Microscale Thermophys. Eng.
,
1
(
3
), pp.
225
235
.
24.
Thorne
,
S. A.
,
Ippolito
,
S. B.
,
Ünlü
,
M. S.
, and
Goldberg
,
B. B.
,
2002
, “
High-Resolution Thermoreflectance Microscopy
,”
MRS Proc.
,
738
, pp.
G12.9.1
G12.9.6
25.
Yang
,
J.
,
Maragliano
,
C.
, and
Schmidt
,
A. J.
,
2013
, “
Thermal Property Microscopy With Frequency Domain Thermoreflectance
,”
Rev. Sci. Instrum.
,
84
(
10
), p.
104904
.
26.
Martínez
,
O. E.
,
Balzarotti
,
F.
, and
Mingolo
,
N.
,
2008
, “
Thermoreflectance and Photodeflection Combined for Microscopic Characterization of Metallic Surfaces
,”
Appl. Phys. B
,
90
(
1
), pp.
69
77
.
27.
Chiu
,
Y.
, and
Pan
,
J.-H.
,
2007
, “
Micro Knife-Edge Optical Measurement Device in a Silicon-on-Insulator Substrate
,”
Opt. Express
,
15
(
10
), pp.
6367
6373
.
28.
Lee
,
B. J.
,
Zhang
,
Z. M.
,
Early
,
E. A.
,
DeWitt
,
D. P.
, and
Tsai
,
B. K.
,
2005
, “
Modeling Radiative Properties of Silicon With Coatings and Comparison With Reflectance Measurements
,”
J. Thermophys. Heat Transfer
,
19
(
4
), pp.
558
565
.
29.
Wray
,
J. H.
, and
Neu
,
J. T.
,
1969
, “
Refractive Index of Several Glasses as a Function of Wavelength and Temperature
,”
J. Opt. Soc. Am.
,
59
(
6
), pp.
774
776
.
30.
Tessier
,
G.
,
Jerosolimski
,
G.
,
Holé
,
S.
,
Fournier
,
D.
, and
Filloy
,
C.
,
2003
, “
Measuring and Predicting the Thermoreflectance Sensitivity as a Function of Wavelength on Encapsulated Materials
,”
Rev. Sci. Instrum.
,
74
(
1
), pp.
495
499
.
31.
de Freitas
,
L. R.
,
da Silva
,
E. C.
,
Mansanares
,
A. M.
,
Tessier
,
G.
, and
Fournier
,
D.
,
2005
, “
Sensitivity Enhancement in Thermoreflectance Microscopy of Semiconductor Devices Using Suitable Probe Wavelengths
,”
J. Appl. Phys.
,
98
(
6
), p.
063508
.
32.
Wang
,
X.
, and
Huang
,
B.
,
2014
, “
Computational Study of in-Plane Phonon Transport in Si Thin Films
,”
Sci. Rep.
,
4
, p.
6399
.
33.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2013
,
Principles of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
34.
Kim
,
K. J.
, and
King
,
W. P.
,
2009
, “
Thermal Conduction Between a Heated Microcantilever and a Surrounding Air Environment
,”
Appl. Therm. Eng.
,
29
(
8-9
), pp.
1631
1641
.
35.
Tosaka
,
H.
,
Minami
,
K.
, and
Esashi
,
M.
,
1995
, “
Optical In Situ Monitoring of Silicon Diaphragm Thickness During Wet Etching
,”
J. Micromech. Microeng.
,
5
(
1
), p.
41
.
36.
Jiang
,
Z.-T.
,
Yamaguchi
,
T.
,
Aoyama
,
M.
, and
Hayashi
,
T.
,
1998
, “
Possibility of Simultaneous Monitoring of Temperature and Surface Layer Thickness of Si Substrate by In Situ Spectroscopic Ellipsometry
,”
Jpn. J. Appl. Phys.
,
37
(
2R
), p.
479
.
37.
Wan
,
Q.
,
Li
,
Q. H.
,
Chen
,
Y. J.
,
Wang
,
T. H.
,
He
,
X. L.
,
Li
,
J. P.
, and
Lin
,
C. L.
,
2004
, “
Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors
,”
Appl. Phys. Lett.
,
84
(
18
), pp.
3654
3656
.
38.
Buzea
,
C.
, and
Robbie
,
K.
,
2005
, “
State of the Art in Thin Film Thickness and Deposition Rate Monitoring Sensors
,”
Rep. Prog. Phys.
,
68
(
2
), p.
385
.
39.
Fonseca
,
L.
,
Santander
,
J.
,
Rubio
,
R.
,
Sabaté
,
N.
,
Figueras
,
E.
,
Duch
,
M.
,
Grácia
,
I.
, and
Cané
,
C.
,
2008
, “
Use of Boron Heavily Doped Silicon Slabs for Gas Sensors Based on Free-Standing Membranes
,”
Sens. Actuator B-Chem.
,
130
(
1
), pp.
538
545
.
40.
Yeo
,
J.
,
Kim
,
G.
,
Hong
,
S.
,
Lee
,
J.
,
Kwon
,
J.
,
Lee
,
H.
,
Park
,
H.
,
Manoroktul
,
W.
,
Lee
,
M.-T.
,
Lee
,
B. J.
,
Grigoropoulos
,
C. P.
, and
Ko
,
S. H.
,
2014
, “
Single Nanowire Resistive Nano-Heater for Highly Localized Thermo-Chemical Reactions: Localized Hierarchical Heterojunction Nanowire Growth
,”
Small
,
10
(
24
), pp.
5015
5022
.
You do not currently have access to this content.