The artificial opals are three-dimensional photonic crystals (PCs) whose microspheres are arranged periodically in a face-centered-cubic (FCC) lattice. In this work, we investigated the reflective properties of artificial opals composed of submicron silica spheres. The finite-difference time-domain (FDTD) method for electromagnetics was used to calculate the directional–hemispherical reflectance spectra of artificial opals. Factors including structural parameters, filling dielectrics, and incident light were considered to study their effect on the reflectance. It is found that the shape, value, and position of peak of the reflectance spectra can be affected by these factors. Furthermore, by analyzing the distribution and propagation of the Poynting vectors at normal incidence of P-polarization, the high reflectance of artificial opals can be attributed to the fact that reflected light from parallel crystal face generates constructive interference to strengthen the total reflected beam. As to the engineering applications, we performed a detailed analysis of the detection sensitivity of artificial opals acting as a chemical sensor. It is found that the diameter of the spheres of artificial opals has a prominent influence on the detection sensitivity which is improved with the increase in the diameter of the spheres. This work will facilitate the design, manufacture, and application of artificial opals.

References

1.
Sanders
,
J. V.
,
1968
, “
Diffraction of Light by Opals
,”
Acta Crystallogr.
,
24
(
4
), pp.
427
434
.
2.
Yablonovitch
,
E.
, and
Gmitter
,
T. J.
,
1990
, “
Photonic Band Structure: The Face-Centered-Cubic Case
,”
Josa A
,
7
(
18
), pp.
1792
1800
.
3.
Aguirre
,
C. I.
,
Reguera
,
E.
, and
Stein
,
A.
,
2010
, “
Tunable Colors in Opals and Inverse Opal Photonic Crystals
,”
Adv. Func. Mater.
,
20
(
16
), pp.
2565
2578
.
4.
Yablonovitch
,
E.
,
1987
, “
Inhibited Spontaneous Emission in Solid-State Physics and Electronics
,”
Phys. Rev. Lett.
,
58
(
20
), pp.
841
844
.
5.
Lin
,
S. Y.
,
Chow
,
E.
,
Hietala
,
V.
,
Villeneuve
,
P. R.
, and
Joannopoulos
,
J. D.
,
1998
, “
Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal
,”
Science
,
282
(
5387
), pp.
274
276
.
6.
John
,
S.
,
1984
, “
Electromagnetic Absorption in a Disordered Medium Near a Photon Mobility Edge
,”
Phys. Rev. Lett.
,
53
(
22
), pp.
2169
2172
.
7.
Bogomolov
,
V. N.
,
Gaponenko
,
S. V.
,
Germanenko
,
I. N.
,
Kapitonov
,
A. M.
,
Petrov
,
E. P.
,
Gaponenko
,
N. V.
,
Prokofiev
,
A. V.
,
Ponyavina
,
A. N.
,
Silvanovich
,
N. I.
, and
Samoilovich
,
S. M.
,
1997
, “
Photonic Band Gap Phenomenon and Optical Properties of Artificial Opals
,”
Phys. Rev. E
,
55
(
6
), pp.
7619
7625
.
8.
Míguez
,
H.
,
Blanco
,
A.
,
Meseguer
,
F.
,
López
,
C.
,
Yates
,
H. M.
,
Pemble
,
M. E.
,
Fornés
,
V.
, and
Mifsud
,
A.
,
1999
, “
Bragg Diffraction From Indium Phosphide Infilled FCC Silica Colloidal Crystals
,”
Phys. Rev. B
,
59
(
3
), pp.
1563
1566
.
9.
Yoshino
,
K.
,
Satoh
,
S.
,
Shimoda
,
Y.
,
Kajii
,
H.
,
Tamura
,
T.
,
Kawagishi
,
Y.
,
Matsui
,
T.
,
Hidayat
,
R.
,
Fujii
,
A.
, and
Ozaki
,
M.
,
2001
, “
Tunable Optical Properties of Conducting Polymers Infiltrated in Synthetic Opal as Photonic Crystal
,”
Synth. Met.
,
121
(
1–3
), pp.
1459
1462
.
10.
Yoshino
,
K.
,
Tatsuhara
,
S.
,
Kawagishi
,
Y.
,
Ozaki
,
M.
,
Zakhidov
,
A. A.
, and
Vardeny
,
Z. V.
,
1999
, “
Amplified Spontaneous Emission and Lasing in Conducting Polymers and Fluorescent Dyes in Opals as Photonic Crystals
,”
Appl. Phys. Lett.
,
74
(
18
), pp.
2590
2592
.
11.
Vaccari
,
A.
,
Cala'Lesina
,
A.
,
Cristoforetti
,
L.
,
Chiappini
,
A.
,
Prudenzano
,
F.
,
Bozzoli
,
A.
, and
Ferrari
,
M.
,
2013
, “
A Parallel Computational FDTD Approach to the Analysis of the Light Scattering From an Opal Photonic Crystal
,”
Proc. SPIE-Int. Soc. Opt. Eng.
,
8781
(
1
), p.
87810P
.
12.
Miskevich
,
A. A.
, and
Loiko
,
V. A.
,
2015
, “
Three-Dimensional Ordered Particulate Structures: Method to Retrieve Characteristics From Photonic Band Gap Data
,”
J. Quant. Spectrosc. Radiat. Transfer
,
151
, pp.
260
268
.
13.
Zaytsev
,
K. I.
,
Katyba
,
G. M.
,
Yakovlev
,
E. V.
,
Aliev
,
I. N.
,
Khorokhorov
,
A. M.
, and
Yurchenko
,
S. O.
,
2015
, “
Structural Light Focusing Phenomenon and Enhanced Second Harmonic Generation in NaNO2-Infiltrated Opal Photonic Crystal
,”
J. Phys. Conf. Ser.
,
584
(
1
), p.
012002
.
14.
Zaytsev
,
K. I.
,
Gorelik
,
V. S.
,
Khorokhorov
,
A. M.
, and
Yurchenko
,
S. O.
,
2014
, “
FDTD Simulation of the Electromagnetic Field Surface States in 2D Photonic Crystals
,”
J. Phys. Conf. Ser.
,
486
(
1
), pp.
79
86
.
15.
Yoshino
,
K.
,
Shimoda
,
Y.
,
Kawagishi
,
Y.
,
Nakayama
,
K.
, and
Ozaki
,
M.
,
1999
, “
Temperature Tuning of the Stop Band in Transmission Spectra of Liquid-Crystal Infiltrated Synthetic Opal as Tunable Photonic Crystal
,”
Appl. Phys. Lett.
,
75
(
7
), pp.
932
934
.
16.
Palik
,
E. D.
,
1998
,
Handbook of Optical Constants of Solids
,
Academic Press
,
Cambridge, MA
.
17.
Sullivan
,
D. M.
,
2013
,
Electromagnetic Simulation Using the FDTD Method
,
Wiley
,
Hoboken, NJ
.
18.
Taflove
,
A.
, and
Hagness
,
S. C.
,
2005
,
Computational Electrodynamics
,
Artech House
,
London, UK
.
19.
Jiang
,
P.
,
Hwang
,
K. S.
,
Mittleman
,
D. M.
,
Bertone
,
J. F.
, and
Colvin
,
V. L.
,
1999
, “
Template-Directed Preparation of Macroporous Polymers With Oriented and Crystalline Arrays of Voids
,”
J. Am. Chem. Soc.
,
121
(
50
), pp.
11630
11637
.
20.
Xia
,
Y.
,
Gates
,
B.
,
Yin
,
Y.
, and
Lu
,
Y.
,
2000
, “
ChemInform Abstract: Monodispersed Colloidal Spheres: old Materials With New Applications
,”
Adv. Mater.
,
12
(
10
), pp.
693
713
.
You do not currently have access to this content.