In this work, a fractional-order theory of thermoelasticity by quasi-static approach is applied to the two-dimensional problem of a thin circular plate whose lower surface is maintained at zero temperature, whereas the upper surface is insulated and subjected to a constant temperature distribution. Integral transform technique is used to derive the solution in the physical domain. The corresponding thermal stresses are found using the displacement potential function.

References

1.
Podlubny
,
I.
,
2002
, “
Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation
,”
Fractional Calculus and Applied Analysis
,
5
(4), pp.
367
386
.https://arxiv.org/abs/math/0110241
2.
Lord
,
H.
, and
Shulman
,
Y.
,
1967
, “
A Generalized Dynamical Theory of Thermoelasticity
,”
J. Mech. Phys. Solids
,
15
(
5
), pp.
299
307
.
3.
Green
,
A. E.
, and
Lindsay
,
K. A.
,
1972
, “
Thermoelasticity
,”
J. Elasticity
,
2
(1), pp.
1
7
.
4.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1993
, “
Thermoelasticity Without Energy Dissipation
,”
J. Elasticity
,
31
(3), pp.
181
208
.
5.
Chandrasekharaiah
,
D. S.
,
1986
, “
Thermoelasticity With Second Sound: A Review
,”
ASME Appl. Mech. Rev.
,
39
(3), pp.
355
376
.
6.
Tripathi
,
J. J.
,
Kedar
,
G. D.
, and
Deshmukh
,
K. C.
,
2015
, “
Generalized Thermoelastic Diffusion Problem in a Thick Circular Plate With Axisymmetric Heat Supply
,”
Acta Mech.
,
226
(7), pp.
2121
2134
.
7.
Tripathi
,
J. J.
,
Kedar
,
G. D.
, and
Deshmukh
,
K. C.
,
2015
, “
Two Dimensional Generalized Thermoelastic Diffusion in a Half Space Under Axisymmetric Distributions
,”
Acta Mech.
,
226
(
10
), pp.
3263
3274
.
8.
Tripathi
,
J. J.
,
Kedar
,
G. D.
, and
Deshmukh
,
K. C.
,
2016
, “
A Brief Note on Generalized Thermoelastic Response in a Half Space Due to a Periodically Varying Heat Source Under Axisymmetric Distribution
,”
Int. J. Thermodyn.
,
19
(1), pp.
1
6
.
9.
Tripathi
,
J. J.
,
Kedar
,
G. D.
, and
Deshmukh
,
K. C.
,
2016
, “
Dynamic Problem of Fractional Order Thermoelasticity for a Thick Circular Plate With Finite Wave Speeds
,”
J. Therm. Stresses
,
39
(
2
), pp.
220
230
.
10.
Povstenko
,
Y.
,
2004
, “
Fractional Heat Conduction Equation and Associated Thermal Stresses
,”
J. Therm. Stresses
,
28
(1), pp.
83
102
.http://dx.doi.org/10.1080/014957390523741
11.
Povstenko
,
Y.
,
2009
, “
Thermoelasticity Which Uses Fractional Heat Conduction Equation
,”
J. Math. Sci.
,
162
(2), pp.
296
305
.
12.
Povstenko
,
Y.
,
2009
, “
Theory of Thermoelasticity Based on the Space-Time-Fractional Heat Conduction Equation
,”
Phys. Scr.
,
2009
(T136), p.
014017
.http://iopscience.iop.org/article/10.1088/0031-8949/2009/T136/014017/pdf
13.
Povstenko
,
Y.
,
2010
, “
Signaling Problem for Time-Fractional Diffusion-Wave Equation in a Half-Plane in the Case of Angular Symmetry
,”
Nonlinear Dyn.
,
59
(4), pp.
593
605
.
14.
Povstenko
,
Y.
,
2010
, “
Fractional Cattaneo-Type Equations and Generalized Thermoelasticity
,”
J. Therm. Stresses
,
34
(2), pp.
97
114
.
15.
Povstenko
,
Y.
,
2012
, “
Theories of Thermal Stresses Based on Space-Time-Fractional Telegraph Equations
,”
Comput. Math. Appl.
,
64
(10), pp.
3321
3328
.
16.
Raslan
,
W. E.
,
2015
, “
Application of Fractional Order Theory of Thermoelasticity in a Thick Plate Under Axisymmetric Temperature Distribution
,”
J. Therm. Stresses
,
38
(
7
), pp.
733
743
.
17.
Sherief
,
H.
,
El-Sayed
,
A.
, and
Abd El-Latief
,
A. M.
,
2010
, “
Fractional Order Theory of Thermoelasticity
,”
Int. J. Solids Struct.
,
47
(2), pp.
269
275
.
18.
Raslan
,
W. E.
,
2014
, “
Application of Fractional Order Theory of Thermoelasticity to a 1D Problem for a Cylindrical Cavity
,”
Arch. Mech.
,
66
(4), pp.
257
267
.http://am.ippt.pan.pl/am/article/view/v66p257
19.
Aouadi
,
M.
,
2006
, “
A Generalized Thermoelastic Diffusion Problem for an Infinitely Long Solid Cylinder
,”
Int. J. Math. Math. Sci.
,
2006
, p.
25976
.
20.
Povstenko
,
Y.
,
2016
, “
Fractional Heat Conduction in a Space With a Source Varying Harmonically in Time and Associated Thermal Stresses
,”
J. Therm. Stresses
,
39
(
11
), pp.
1442
1450
.
21.
Kulkarni
,
V. S.
,
Deshmukh
,
K. C.
, and
Warbhe
,
S. D.
,
2008
, “
Quasi-Static Thermal Stresses Due to Heat Generation in a Thin Hollow Circular Disk
,”
J. Therm. Stresses
,
31
(8), pp.
698
705
.
22.
Deshmukh
,
K. C.
,
Warbhe
,
S. D.
, and
Kulkarni
,
V. S.
,
2009
, “
Quasi-Static Thermal Deflection of a Thin Clamped Circular Plate Due to Heat Generation
,”
J. Therm. Stresses
,
32
(9), pp.
877
886
.
23.
Deshmukh
,
K. C.
,
Warbhe
,
S. D.
, and
Kulkarni
,
V. S.
,
2011
, “
Brief Note on Heat Flow With Arbitrary Heating Rates in a Hollow Cylinder
,”
J. Therm. Stresses
,
15
(
1
), pp.
275
280
.
24.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications
,
Academic Press
,
New York
.
You do not currently have access to this content.