Soot aggregates frequently occur during combustion or pyrolysis of fuels. The radiative properties of soot aggregates at high temperature are important for understanding soot characteristics and evaluating heat transfer in combustion systems. However, few data for soot radiative properties at high temperature were available. This work experimentally investigated the apparent emissivity of the soot aggregate coating at high temperature using spectral and total hemispherical measurements. The soot aggregate coatings were formed on nickel substrates by a paraffin flame. The surface and inner morphology of the coatings were characterized by scanning electron microscope (SEM). The thickness of the coating was 30.16 μm so the contribution of the smooth nickel substrate to the apparent radiation from the coating could be neglected. The total hemispherical emissivity of the coating on the nickel substrate was measured using the steady-state calorimetric method at different temperatures. The spectral directional emissivity of the coating was measured for the wavelength of 0.38–16.0 μm at the room temperature. The measurements show that the total hemispherical emissivity decreases from 0.895 to 0.746 as the temperature increases from 438 K to 1052 K. The total hemispherical emissivity of the coating deposited on the nickel substrate is much larger than those of the nickel substrate and a nickel oxidization film. The measured spectral emissivity of the coating at the room temperature was used to theoretically calculate the total hemispherical emissivity at different temperatures by integration with respect to wavelength. The measured and calculated total hemispherical emissivities were similar, but their changes relative to temperature were completely opposite. This difference is due to the fact that the spectral emissivity of the coating is a function of temperature. The present results provide useful reference data for analyzing radiative heat transfer at high temperature of soot aggregates in combustion processes.

References

1.
Omidvarborna
,
H.
,
Kumar
,
A.
, and
Kim
,
D. S.
,
2015
, “
Recent Studies on Soot Modeling for Diesel Combustion
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
635
647
.
2.
Lu
,
P.
,
Li
,
C.
,
Zeng
,
G.
,
Xie
,
X.
,
Cai
,
Z.
,
Zhou
,
Y.
,
Zhao
,
Y.
,
Zhan
,
Q.
, and
Zeng
,
Z.
,
2012
, “
Research on Soot of Black Smoke From Ceramic Furnace Flue Gas: Characterization of Soot
,”
J. Hazard. Mater.
,
199–200
, pp.
272
281
.
3.
Lux
,
J.
, and
Haidn
,
O.
,
2009
, “
Flame Stabilization in High-Pressure Liquid Oxygen/Methane Rocket Engine Combustion
,”
J. Propul. Power
,
25
(
1
), pp.
15
23
.
4.
Di Domenico
,
M.
,
Gerlinger
,
P.
, and
Aigner
,
M.
,
2010
, “
Development and Validation of a New Soot Formation Model for Gas Turbine Combustor Simulations
,”
Combust. Flame
,
157
(
2
), pp.
246
258
.
5.
Yehliu
,
K.
,
Armas
,
O.
,
Vander Wal
,
R. L.
, and
Boehman
,
A. L.
,
2013
, “
Impact of Engine Operating Modes and Combustion Phasing on the Reactivity of Diesel Soot
,”
Combust. Flame
,
160
(
3
), pp.
682
691
.
6.
Karataş
,
A. E.
, and
Gülder
,
Ö. L.
,
2012
, “
Soot Formation in High Pressure Laminar Diffusion Flames
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
818
845
.
7.
Farias
,
T. L.
,
Carvalho
,
M. G.
, and
Köylü
,
Ü. Ö.
,
1998
, “
Radiative Heat Transfer in Soot-Containing Combustion Systems With Aggregation
,”
Int. J. Heat Mass Transfer
,
41
(
17
), pp.
2581
2587
.
8.
Saji
,
C. B.
,
Balaji
,
C.
, and
Sundararajan
,
T.
,
2008
, “
Investigation of Soot Transport and Radiative Heat Transfer in an Ethylene Jet Diffusion Flame
,”
Int. J. Heat Mass Transfer
,
51
(
17
), pp.
4287
4299
.
9.
Al-Omari
,
A. B.
,
Kawajiri
,
S. K.
, and
Yonesawa
,
T.
,
2001
, “
Soot Processes in a Methane-Fueled Furnace and Their Impact on Radiation Heat Transfer to Furnace Walls
,”
Int. J. Heat Mass Transfer
,
44
(
13
), pp.
2567
2581
.
10.
Hoose
,
C.
,
Kristjánsson
,
J. E.
,
Chen
,
J. P.
, and
Hazra
,
A.
,
2010
, “
A Classical-Theory-Based Parameterization of Heterogeneous Ice Nucleation by Mineral Dust, Soot, and Biological Particles in a Global Climate Model
,”
J. Atmos. Sci.
,
67
(
8
), pp.
2483
2503
.
11.
Adachi
,
K.
,
Chung
,
S. H.
, and
Buseck
,
P. R.
,
2010
, “
Shapes of Soot Aerosol Particles and Implications for Their Effects on Climate
,”
J. Geophys. Res.: Atmos.
,
115
(
D15
), pp.
4447
4458
.
12.
Kärcher
,
B.
,
Möhler
,
O.
,
DeMott
,
P. J.
,
Pechtl
,
S.
, and
Yu
,
F.
,
2007
, “
Insights Into the Role of Soot Aerosols in Cirrus Cloud Formation
,”
Atmos. Chem. Phys.
,
7
(
16
), pp.
4203
4227
.
13.
China
,
S.
,
Mazzoleni
,
C.
,
Gorkowski
,
K.
,
Aiken
,
A. C.
, and
Dubey
,
M. K.
,
2013
, “
Morphology and Mixing State of Individual Freshly Emitted Wildfire Carbonaceous Particles
,”
Nat. Commun.
,
4
(
7
), p.
2122
.
14.
Schwarz
,
J. P.
,
Gao
,
R. S.
,
Spackman
,
J. R.
,
Watts
,
L. A.
,
Thomson
,
D. S.
,
Fahey
,
D. W.
,
Ryerson
,
T. B.
,
Peischl
,
J.
,
Holloway
,
J. S.
,
Trainer
,
M.
,
Frost
,
G. J.
,
Baynard
,
T.
,
Lack
,
D. A.
,
de Gouw
,
J. A.
,
Warneke
,
C.
, and
Del Negro
,
L. A.
,
2008
, “
Measurement of the Mixing State, Mass, and Optical Size of Individual Black Carbon Particles in Urban and Biomass Burning Emissions
,”
Geophys. Res. Lett.
,
35
(
13
), pp.
337
344
.
15.
Yon
,
J.
,
Bescond
,
A.
, and
Liu
,
F.
,
2015
, “
On the Radiative Properties of Soot Aggregates Part 1: Necking and Overlapping
,”
J. Quant. Spectrosc. Radiative Transfer
,
162
, pp.
197
206
.
16.
Liu
,
F.
,
Yon
,
J.
, and
Bescond
,
A.
,
2015
, “
On the Radiative Properties of Soot Aggregates–Part 2: Effects of Coating
,”
J. Quant. Spectrosc. Radiative Transfer
,
172
, pp.
134
145
.
17.
Yon
,
J.
,
Liu
,
F.
,
Bescond
,
A.
,
Caumont-Prim
,
C.
,
Rozé
,
C.
,
Ouf
,
F. X.
, and
Coppalle
,
A.
,
2014
, “
Effects of Multiple Scattering on Radiative Properties of Soot Fractal Aggregates
,”
J. Quant. Spectrosc. Radiative Transfer
,
133
, pp.
374
381
.
18.
Soewono
,
A.
, and
Rogak
,
S. N.
,
2013
, “
Morphology and Optical Properties of Numerically Simulated Soot Aggregates
,”
Aerosol Sci. Technol.
,
47
(
3
), pp.
267
274
.
19.
Slowik
,
J. G.
,
Cross
,
E. S.
,
Han
,
J. H.
,
Kolucki
,
J.
,
Davidovits
,
P.
,
Williams
,
L. R.
,
Onasch
,
T. B.
,
Jayne
,
J. T.
,
Kolb
,
C. E.
, and
Worsnop
,
D. R.
,
2007
, “
Measurements of Morphology Changes of Fractal Soot Particles Using Coating and Denuding Experiments: Implications for Optical Absorption and Atmospheric Lifetime
,”
Aerosol Sci. Technol.
,
41
(
8
), pp.
734
750
.
20.
Yin
,
J. Y.
,
Yang
,
H. Y.
,
Zhang
,
S. Q.
,
Qin
,
Y.
, and
Zhou
,
Z.
,
2014
, “
Influence of Soot Agglomerate Morphology on Radiative Properties in Concentration Detection
,”
Fourth International Conference on Computer, Communication and Control
(
IMCCC
), IEEE, pp.
745
750
.
21.
Yin
,
J. Y.
, and
Liu
,
L. H.
,
2010
, “
Influence of Complex Component and Particle Polydispersity on Radiative Properties of Soot Aggregate in Atmosphere
,”
J. Quant. Spectrosc. Radiative Transfer
,
111
(
14
), pp.
2115
2126
.
22.
Dong
,
J.
,
Zhao
,
J. M.
, and
Liu
,
L. H.
,
2015
, “
Morphological Effects on the Radiative Properties of Soot Aerosols in Different Internally Mixing States With Sulfate
,”
J. Quant. Spectrosc. Radiative Transfer
,
165
, pp.
43
55
.
23.
Migliorini
,
F.
,
Thomson
,
K. A.
, and
Smallwood
,
G. J.
,
2011
, “
Investigation of Optical Properties of Aging Soot
,”
Appl. Phys. B
,
104
(
2
), pp.
273
283
.
24.
China
,
S.
,
Scarnato
,
B.
,
Owen
,
R. C.
,
Zhang
,
B.
,
Ampadu
,
M. T.
,
Kumar
,
S.
,
Dzepina
,
K.
,
Dziobak
,
M. P.
,
Fialho
,
P.
,
Perlinger
,
J. A.
,
Hueber
,
J.
,
Helmig
,
D.
,
Mazzoleni
,
L. R.
, and
Mazzoleni
,
C.
,
2015
, “
Morphology and Mixing State of Aged Soot Particles at a Remote Marine Free Troposphere Site: Implications for Optical Properties
,”
Geophys. Res. Lett.
,
42
(
4
), pp.
1243
1250
.
25.
Snelling
,
D. R.
,
Thomson
,
K. A.
,
Smallwood
,
G. J.
,
Gülder
,
Ö. L.
,
Weckman
,
E. J.
, and
Fraser
,
R. A.
,
2002
, “
Spectrally Resolved Measurement of flame Radiation to Determine Soot Temperature and Concentration
,”
AIAA J.
,
40
(
9
), pp.
1789
1795
.
26.
Ayrancı
,
I.
,
Vaillon
,
R.
, and
Selçuk
,
N.
,
2008
, “
Near-Infrared Emission Spectrometry Measurements for Nonintrusive Soot Diagnostics in Flames
,”
J. Quant. Spectrosc. Radiative Transfer
,
109
(
2
), pp.
349
361
27.
Musculus
,
P. B.
,
Singh
,
M. S.
, and
Reitz
,
R. D.
,
2008
, “
Gradient Effects on Two-Color Soot Optical Pyrometry in a Heavy-Duty DI Diesel Engine
,”
Combust. Flame
,
153
(
1
), pp.
216
227
.
28.
Snelling
,
D. R.
,
Sawchuk
,
R. A.
,
Smallwood
,
G. J.
, and
Thomson
,
K.
,
2015
, “
Measurement of Soot Concentration and Bulk Fluid Temperature and Velocity Using Modulated Laser-Induced Incandescence
,”
Appl. Phys. B
,
119
(
4
), pp.
697
707
.
29.
Iuliis
,
S. D.
,
Cignoli
,
F.
, and
Zizak
,
G.
,
2005
, “
Two-Color Laser-Induced Incandescence (2C-LII) Technique for Absolute Soot Volume Fraction Measurements in Flames
,”
Appl. Opt.
,
44
(
34
), pp.
7414
7423
.
30.
Yelverton
,
T. L. B.
, and
Roberts
,
W. L.
,
2008
, “
Soot Surface Temperature Measurements in Pure and Diluted Flames at Atmospheric and Elevated Pressures
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
17
22
.
31.
Simonini
,
S.
,
Elston
,
S. J.
, and
Stone
,
C. R.
,
2001
, “
Soot Temperature and Concentration Measurements From Colour Charge Coupled Device Camera Images Using a Three-Colour Method
,”
Proc. Inst. Mech. Eng., Part C
,
215
(
9
), pp.
1041
1052
.
32.
Sun
,
D.
,
Lu
,
G.
,
Zhou
,
H.
, and
Yan
,
Y.
,
2012
, “
Measurement of Soot Temperature, Emissivity and Concentration of a Heavy-Oil Flame Through Pyrometric Imaging
,”
IEEE International Instrumentation and Measurement Technology Conference
(
I2MTC
), pp.
1865
1869
.
33.
Huang
,
H. W.
, and
Zhang
,
Y.
,
2008
, “
Flame Colour Characterization in the Visible and Infrared Spectrum Using a Digital Camera and Image Processing
,”
Meas. Sci. Technol.
,
19
(
8
), p.
085406
.
34.
Fu
,
T. R.
,
Tan
,
P.
, and
Pang
,
C. H.
,
2012
, “
A Steady-State Measurement System for Total Hemispherical Emissivity
,”
Meas. Sci. Technol.
,
23
(
2
), p.
025006
.
35.
Fu
,
T. R.
,
Tan
,
P.
, and
Zhong
,
M. H.
,
2012
, “
Experimental Research on the Influence of Surface Conditions on the Total Hemispherical Emissivity
,”
Exp. Therm. Fluid Sci.
,
40
, pp.
159
167
.
36.
Fu
,
T. R.
, and
Tan
,
P.
,
2012
, “
Transient Calorimetric Measurement Method for Total Hemispherical Emissivity
,”
ASME J. Heat Transfer
,
134
(
11
), p.
111601
.
37.
Fu
,
T. R.
,
Tan
,
P.
,
Ren
,
J.
, and
Wang
,
H. S.
,
2014
, “
Total Hemispherical Radiation Properties of Oxidized Nickel at High Temperatures
,”
Corrosion Sci.
,
83
, pp.
272
280
.
38.
Fu
,
T. R.
,
Tan
,
P.
, and
Duan
,
M. H.
,
2015
, “
Simultaneous Measurements of High-Temperature Total Hemispherical Emissivity and Thermal Conductivity Using a Steady-State Calorimetric Technique
,”
Meas. Sci. Technol.
,
26
(
1
), p.
015003
.
39.
De Iuliis
,
S.
,
Barbini
,
M.
,
Benecchi
,
S.
,
Cignoli
,
F.
, and
Zizak
,
G.
,
1998
, “
Determination of the Soot Volume Fraction in an Ethylene Diffusion Flame by Multiwavelength Analysis of Soot Radiation
,”
Combust. Flame
,
115
(
1–2
), pp.
253
261
.
40.
Howell
,
J. R.
,
Siegel
,
R.
, and
Menguc
,
M. P.
,
2010
,
Thermal Radiation Heat Transfer
, 5th ed.,
CRC Press
,
Boca Raton, FL.
41.
Dombrovsky
,
L.
,
Randrianalisoa
,
J.
, and
Baillis
,
D.
,
2006
, “
Modified Two-Flux Approximation for Identification of Radiative Properties of Absorbing and Scattering Media From Directional-Hemispherical Measurements
,”
J. Opt. Soc. Am. A
,
23
(
1
), pp.
91
98
.
42.
Zhang
,
Z. M.
, and
Wang
,
L. P.
,
2013
, “
Measurements and Modeling of the Spectral and Directional Radiative Properties of Micro/Nanostructured Materials
,”
Int. J. Thermophys.
34
(
12
), pp.
2209
2242
.
43.
Fu
,
T. R.
,
Tang
,
J. Q.
,
Chen
,
K.
, and
Zhang
,
F.
,
2016
, “
Determination of Scattering and Absorption Coefficients of Porous Silica Aerogel Composites
,”
ASME J. Heat Transfer
,
138
(
3
), p.
032702
.
44.
Beresnev
,
S. A.
,
Vasiljeva
,
M. S.
,
Gryazin
,
V. I.
, and
Kochneva
,
L. B.
,
2015
, “
Modeling of Microphysical Characteristics for Fractal-Like Soot Aggregates: The Effective Heat Conductivity
,”
XXI International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, International Society for Optics and Photonics
, Tomsk, Russian, June 22, p.
96800W
.
You do not currently have access to this content.