This study investigates the unsteady heat transfer and entropy generation characteristics of a non-Newtonian fluid, squeezed and extruded between two parallel plates. In an effort to capture the underlying thermo-hydrodynamics, the power-law model is used here to describe the constitutive behavior of the non-Newtonian fluid. The results obtained from the present analysis reveal the intricate interplay between the fluid rheology and the squeezing dynamics, toward altering the Nusselt number and Bejan number characteristics. Findings from this study may be utilized to design optimal process parameters for enhanced thermodynamic performance of engineering systems handling complex fluids undergoing simultaneous extrusion and squeezing.

References

1.
Lawal
,
A.
, and
Kalyon
,
D. M.
,
1997
, “
Nonisothermal Extrusion Flow of Viscoplastic Fluids With Wall Slip
,”
Int. J. Heat Mass Transfer
,
40
(
16
), pp.
3883
3897
.
2.
Hsiang
,
S. H.
, and
Kuo
,
J. L.
,
2003
, “
An Investigation on the Hot Extrusion Process of Magnesium Alloy Sheet
,”
J. Mater. Process. Technol.
,
140
(
1
), pp.
6
12
.
3.
Khiabani
,
R. H.
,
Joshi
,
Y.
, and
Aidun
,
C. K.
,
2010
, “
Thermal Properties of Particulate TIMs in Squeeze Flow
,”
Int. J. Heat Mass Transfer
,
53
(
19
), pp.
4039
4046
.
4.
Shukla
,
J. B.
,
Prasad
,
K. R.
, and
Chandra
,
P.
,
1982
, “
Effects of Consistency Variation of Power Law Lubricants in Squeeze Films
,”
Wear
,
76
(
3
), pp.
299
319
.
5.
Mahanti
,
A. C.
, and
Ramanaiah
,
G.
,
1976
, “
Inertia Effect of Micropolar Fluid in Squeeze Bearings and Thrust Bearings
,”
Wear
,
39
(
2
), pp.
227
238
.
6.
Gupta
,
R. S.
, and
Sharma
,
L. G.
,
1988
, “
Analysis of Couple Stress Lubricant in Hydrostatic Thrust Bearing
,”
Wear
,
125
(
3
), pp.
257
269
.
7.
Meurisse
,
M. H.
, and
Querry
,
M.
,
2006
, “
Squeeze Effects in a Flat Liquid Bridge Between Parallel Solid Surfaces
,”
ASME J. Tribol.
,
128
(
3
), pp.
575
585
.
8.
Chen
,
Z.
,
Ikeda
,
K.
,
Murakami
,
T.
, and
Takeda
,
T.
,
2000
, “
Drainage Phenomenon of Pastes During Extrusion
,”
J. Mater. Sci.
,
35
(
10
), pp.
2517
2523
.
9.
Chan
,
T. W.
, and
Baird
,
D. G.
,
2002
, “
An Evaluation of a Squeeze Flow Rheometer for the Rheological Characterization of a Filled Polymer With a Yield Stress
,”
Rheol. Acta
,
41
(
3
), pp.
245
256
.
10.
Pearson
,
J. R. A.
,
1978
, “
Polymer Flows Dominated by High Heat Generation and Low Heat Transfer
,”
Polym. Eng. Sci.
,
18
(
3
), pp.
222
229
.
11.
Hung
,
Y. M.
,
2008
, “
Viscous Dissipation Effect on Entropy Generation for Non-Newtonian Fluids in Microchannels
,”
Int. Commun. Heat Mass Transfer
,
35
(
9
), pp.
1125
1129
.
12.
Rajagopal
,
K. R.
,
1982
, “
A Note on Unsteady Unidirectional Flows of a Non-Newtonian Fluid
,”
Int. J. Non-Linear Mech.
,
17
(
5
), pp.
369
373
.
13.
Szeri
,
A. Z.
, and
Rajagopal
,
K. R.
,
1985
, “
Flow of a Non-Newtonian Fluid Between Heated Parallel Plates
,”
Int. J. Non-Linear Mech.
,
20
(
2
), pp.
91
101
.
14.
Siddiqui
,
A. M.
,
Hayat
,
T.
, and
Asghar
,
S.
,
1999
, “
Periodic Flows of a Non-Newtonian Fluid Between Two Parallel Plates
,”
Int. J. Non-Linear Mech.
,
34
(
5
), pp.
895
899
.
15.
Wenchang
,
T.
,
Wenxiao
,
P.
, and
Mingyu
,
X.
,
2003
, “
A Note on Unsteady Flows of a Viscoelastic Fluid With the Fractional Maxwell Model Between Two Parallel Plates
,”
Int. J. Non-Linear Mech.
,
38
(
5
), pp.
645
650
.
16.
Zwick
,
K. J.
,
Ayyaswamy
,
P. S.
, and
Cohen
,
I. M.
,
1997
, “
Oscillatory Enhancement of the Squeezing Flow of Yield Stress Fluids: A Novel Experimental Result
,”
J. Fluid Mech.
,
339
, pp.
77
87
.
17.
Zwick
,
K. J.
,
Ayyaswamy
,
P. S.
, and
Cohen
,
I. M.
,
1996
, “
Variational Analysis of the Squeezing Flow of a Yield Stress Fluid
,”
J. Non-Newtonian Fluid Mech.
,
63
(
2–3
), pp.
179
199
.
18.
Housiadas
,
K.
, and
Tsamopoulos
,
J.
,
2000
, “
Unsteady Extrusion of a Viscoelastic Annular Film: I. General Model and Its Numerical Solution
,”
J. Non-Newtonian Fluid Mech.
,
88
(
3
), pp.
229
259
.
19.
Duwairi
,
H. M.
,
Tashtoush
,
B.
, and
Damseh
,
R.
,
2004
, “
On Heat Transfer Effects of a Viscous Fluid Squeezed and Extruded Between Two Parallel Plates
,”
Heat Mass Transfer
,
41
(
2
), pp.
112
117
.
20.
Jambal
,
O.
,
Shigechi
,
T.
,
Davaa
,
G.
, and
Momoki
,
S.
,
2005
, “
Effects of Viscous Dissipation and Fluid Axial Heat Conduction on Heat Transfer for Non-Newtonian Fluids in Ducts With Uniform Wall Temperature: Part I: Parallel Plates and Circular Ducts
,”
Int. Commun. Heat Mass Transfer
,
32
(
9
), pp.
1165
1173
.
21.
Kaushik
,
P.
,
Mondal
,
P. K.
, and
Chakraborty
,
S.
,
2016
, “
Flow Dynamics of a Viscoelastic Fluid Squeezed and Extruded Between Two Parallel Plates
,”
J. Non-Newtonian Fluid Mech.
,
227
, pp.
56
64
.
22.
López de Haro
,
M.
,
Cuevas
,
S.
, and
Beltrán
,
A.
,
2014
, “
Heat Transfer and Entropy Generation in the Parallel Plate Flow of a Power-Law Fluid With Asymmetric Convective Cooling
,”
Energy
,
66
, pp.
750
756
.
23.
Anand
,
V.
,
2014
, “
Slip Law Effects on Heat Transfer and Entropy Generation of Pressure Driven Flow of a Power Law Fluid in a Microchannel Under Uniform Heat Flux Boundary Condition
,”
Energy
,
76
, pp.
716
732
.
24.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2006
, “
Second Law Analysis of Forced Convection in a Circular Duct for Non-Newtonian Fluids
,”
Energy
,
31
(
12
), pp.
2226
2244
.
25.
Leal
,
L. G.
,
1989
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
,
Cambridge University Press
,
New York
.
26.
Bejan
,
A.
,
2004
,
Convection Heat Transfer
,
Wiley
,
Hoboken, NJ
.
27.
Bejan
,
A.
,
1982
, “
Second-Law Analysis in Heat Transfer and Thermal Design
,”
Adv. Heat Transfer
,
15
, pp.
1
58
.
28.
Anderson
,
J.
,
1995
,
Computational Fluid Dynamics
,
McGraw-Hill Education
,
Singapore
.
You do not currently have access to this content.