This study includes experimental and three-dimensional numerical analysis of conjugate steady-state laminar forced ferroconvection of Newtonian incompressible ferrofluid through a horizontal circular pipe under constant heat flux and in presence of transverse magnetic field. The magnetic field was applied by two fixed parallel magnet bars at the beginning of the tube. To validate the thermohydrodynamic characteristics obtained by numerical results, appropriate experimental setup with accurate instrumentations was conducted. Based on presence and absence of porous media and solid rod inside of pipe, six conditions were compared for quantifying the heat transfer enhancement and effectiveness. Governing equations were discretized by finite volume method (FVM) and solved using the semi-implicit method for pressure linked equations (SIMPLE) algorithm and computational fluid dynamic (CFD) techniques. It was found that magnetic field, porous media, and solid rod increase heat transfer and pressure loss in the pipe such that solid rod has the best effect on heat transfer and worst effect on effectiveness.

References

1.
Shahpari
,
A.
,
Ferreira
,
R.
,
Riberio
,
V.
,
Ziaie
,
A.
,
Tavares
,
A.
,
Vujicic
,
Z.
,
Guiomar
,
F. P.
,
Reis
,
J. D.
,
Pinto
,
A. N.
, and
Teixeira
,
A.
,
2015
, “
Coherent Ultra Dense Wavelength Division Multiplexing Passive Optical Networks
,”
Opt. Fiber Technol.
,
26
(
Pt. A
), pp.
100
107
.
2.
Vekas
,
L.
,
2004
, “
Magnetic Nanofluids Properties and Application, Nanostructure Materials
,”
Rom. J. Phys.
,
49
(
9–10
), pp.
707
721
.
3.
Rosensweig
,
R. E.
,
1985
,
Ferrohydrodynamics
,
Cambridge University Press
,
Cambridge, NY
.
4.
Scherer
,
C.
, and
Neto
,
A. M.
,
2005
, “
Ferrofluids: Properties and Application
,”
Braz. J. Phys.
,
35
(
3A
), pp.
718
727
.
5.
Blaney
,
L.
,
2007
, “
Magnetite (Fe3O4): Properties, Synthesis, and Applications
,”
Lehigh Rev.
,
15
, pp.
33
81
.
6.
Sheikhnejad
,
Y.
, and
Gandjalikhan Nassab
,
S. A.
,
2010
, “
Three-Dimensional Numerical Analysis of Hydrodynamic Characteristics of Axial Groove Journal Bearings Running With Ferrofluids Under Magnetic Field
,”
Proc. Inst. Mech. Eng., Part J
,
224
(
7
), pp.
609
619
.
7.
Lajvardi
,
M.
,
Moghimi-Rad
,
J.
,
Hadi
,
I.
,
Gavili
,
A.
,
Dallali Isfahani
,
T.
,
Zabihi
,
F.
, and
Sabbaghzadeh
,
J.
,
2010
, “
Experimental Investigation for Enhanced Ferrofluid Heat Transfer Under Magnetic Field Effect
,”
J. Magn. Magn. Mater.
,
322
(
21
), pp.
3508
3513
.
8.
Goharkhah
,
M.
, and
Ashjaee
,
M.
,
2014
, “
Effect of an Alternating Nonuniform Magnetic Field on Ferrofluid Flow and Heat Transfer in a Channel
,”
J. Magn. Magn. Mater.
,
362
, pp.
80
89
.
9.
Nanjundappa
,
C. E.
,
Shivakumara
,
I. S.
, and
Arunkumar
,
R.
,
2010
, “
Bénard–Marangoni Ferroconvection With Magnetic Field Dependent Viscosity
,”
J. Magn. Magn. Mater.
,
322
(
15
), pp.
2256
2263
.
10.
Shivakumara
,
I. S.
,
Rudraiah
,
N.
, and
Nanjundappa
,
C. E.
,
2002
, “
Effect of Non-Uniform Basic Temperature Gradient on Rayleigh–Benard–Marangoni Convection in Ferrofluids
,”
J. Magn. Magn. Mater.
,
248
(
3
), pp.
379
395
.
11.
Aminfar
,
H.
,
Mohammadpourfard
,
M.
, and
Ahangar Zonouzi
,
S.
,
2013
, “
Numerical Study of the Ferrofluid Flow and Heat Transfer Through a Rectangular Duct in the Presence of a Non-Uniform Transverse Magnetic Field
,”
J. Magn, Magn. Mater.
,
327
, pp.
31
42
.
12.
Akram
,
S.
,
Nadeem
,
S.
, and
Hussain
,
A.
,
2014
, “
Effects of Heat and Mass Transfer on Peristaltic Flow of a Bingham Fluid in the Presence of Inclined Magnetic Field and Channel With Different Wave Forms
,”
J. Magn. Magn. Mater.
,
362
, pp.
184
192
.
13.
Klinbun
,
W.
,
Vafai
,
K.
, and
Rattanadecho
,
P.
,
2012
, “
Electromagnetic Field Effects on Transport Through Porous Media
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
325
335
.
14.
Sheikhnejad
,
Y.
,
Hosseini
,
R.
, and
Saffar Avval
,
M.
,
2015
, “
Effect of Different Magnetic field Distributions on Laminar Ferroconvection Heat Transfer in Horizontal Tube
,”
J. Magn. Magn. Mater.
,
389
, pp.
136
143
.
15.
Sheikhnejad
,
Y.
,
Hosseini
,
R.
, and
Saffar Avval
,
M.
,
2017
, “
Experimental Study on Heat Transfer Enhancement of Laminar Ferrofluid Flow in Horizontal Tube Partially filled Porous Media Under Fixed Parallel Magnet Bars
,”
J. Magn. Magn. Mater.
,
424
, pp.
16
25
16.
Sheikhnejad
,
Y.
,
Hosseini
,
R.
, and
Saffar-Avval
,
M.
,
2015
, “
Laminar Forced Convection of Ferrofluid in a Horizontal Tube Partially Field With Porous Media in the Presence of Magnetic Field
,”
J. Porous Media
,
18
(
4
), pp.
437
448
.
17.
Alazmi
,
B.
, and
Vafai
,
K.
,
2002
, “
Analysis of Fluid Flow and Heat Transfer Interfacial Conditions Between a Porous Medium and Fluid Layer
,”
Int. J. Heat Mass Transfer
,
45
(
15
), pp.
3071
3087
.
18.
Bejan
,
A.
, and
Krraus
,
A. D.
,
2003
,
Heat Transfer Handbook
,
Wiley
,
Hoboken, NJ
.
19.
Patel
,
R.
,
Upadhyay
,
R. V.
, and
Mehta
,
R. V.
,
2003
, “
Viscosity Measurements of a Ferrofluid: Comparison With Various Hydrodynamic Equations
,”
J. Colloid Interface Sci.
,
263
(
2
), pp.
661
664
.
20.
Odenbach
,
S.
,
2002
,
Magnetoviscous Effects in Ferrofluids
(Lecture Notes in Physics, Physics and Astronomy Online Library),
Springer
,
Berlin
.
21.
Shliomis
,
M. I.
,
2002
,
Ferrohydrodynamic: Retrospective and Issue
(Lecture Note in Physics, Vol.
594
), Springer, Berlin, pp.
85
111
.
22.
Shliomis
,
M. I.
,
1974
, “
Magnetic Fluids
,”
Sov. Phys. Usp.
,
17
(
2
), pp.
153
159
(in English).
23.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
, CRC Press, Boca Raton, FL.
24.
Andelman
,
D.
, and
Rosensweig
,
R. E.
,
2009
, “
Modulated Phases: Review and Recent Results
,”
J. Phys. Chem. B
,
113
(
12
), pp.
3785
3798
.
25.
Kirkup
,
L.
, and
Frenkel
,
R. B.
,
2006
,
Introduction to Uncertainty Measurement
,
Cambridge University Press
, Cambridge, UK.
You do not currently have access to this content.