Vertically aligned carbon nanotube (CNT) arrays are promising candidates for advanced thermal interface materials (TIMs) since they possess high mechanical compliance and high intrinsic thermal conductivity. However, the overall thermal performance of CNT arrays often falls short of expectations when used as TIMs, and the underlying reasons have yet to be fully understood. In this work, the volume fraction of CNT arrays is demonstrated to be the key factor in determining the CNT array thermal transport properties. By increasing the array volume fraction, both the CNT array effective thermal conductivity and the CNT array–glass thermal contact conductance were experimentally found to increase monotonically. One interesting phenomenon is that the increasing rate of thermal conductivity is larger than that of array volume fraction. Compressive experiments verified that the CNT arrays with lower volume fractions suffer from severe buckling, which results in a further decreasing trend. By understanding the underlying reasons behind this trend, the overall thermal performance of vertically aligned CNT arrays can be further increased.

References

1.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Direction
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.
2.
Samson
,
E. C.
,
Machiroutu
,
S. V.
,
Chang
,
J. Y.
,
Santos
,
I.
,
Hermerding
,
J.
,
Dani
,
A.
,
Prasher
,
R.
, and
Song
,
D.
,
2005
, “
Interface Material Selection and a Thermal Management Technique in Second-Generation Platforms Built on Intel Centrino Mobile Technology
,”
Intel Technol. J.
,
9
(
1
), p.
75
.
3.
Cao
,
A.
,
Dickrell
,
P. L.
,
Sawyer
,
W. G.
,
Ghasemi-Nejhad
,
M. N.
, and
Ajayan
,
P. M.
,
2005
, “
Super-Compressible Foamlike Carbon Nanotube Films
,”
Science
,
310
(
5752
), pp.
1307
1310
.
4.
Suhr
,
J.
,
Victor
,
P.
,
Ci
,
L.
,
Sreekala
,
S.
,
Zhang
,
X.
,
Nalamasu
,
O.
, and
Ajayan
,
P. M.
,
2007
, “
Fatigue Resistance of Aligned Carbon Nanotube Arrays Under Cyclic Compression
,”
Nat. Nanotechnol.
,
2
(
7
), pp.
417
421
.
5.
Falvo
,
M. R.
,
Clary
,
G. J.
,
Taylor
,
R. M.
, II
,
Chi
,
V.
,
Brooks
,
F. P.
, Jr.
,
Washburn
,
S.
, and
Superfine
,
R.
,
1997
, “
Bending and Buckling of Carbon Nanotubes Under Large Strain
,”
Nature
,
389
(
6651
), pp.
582
584
.
6.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
,
2008
, “
Height Independent Compressive Modulus of Vertically Aligned Carbon Nanotube Arrays
,”
Nano Lett.
,
8
(
2
), pp.
511
515
.
7.
Fujii
,
M.
,
Zhang
,
X.
,
Xie
,
H.
,
Ago
,
H.
,
Takahashi
,
K.
,
Ikuta
,
T.
,
Abe
,
H.
, and
Shimizu
,
T.
,
2005
, “
Measuring the Thermal Conductivity of a Single Carbon Nanotube
,”
Phys. Rev. Lett.
,
95
(
6
), p.
065502
.
8.
Pop
,
E.
,
Mann
,
D.
,
Wang
,
Q.
,
Goodson
,
K.
, and
Dai
,
H.
,
2006
, “
Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature
,”
Nano Lett.
,
6
(
1
), pp.
96
100
.
9.
Yu
,
C.
,
Shi
,
L.
,
Yao
,
Z.
,
Li
,
D.
, and
Majumdar
,
A.
,
2005
, “
Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube
,”
Nano Lett.
,
5
(
9
), pp.
1842
1846
.
10.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
,
2001
, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
,
87
(
21
), p.
215502
.
11.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), pp.
2252
2254
.
12.
Biercuk
,
M. J.
,
Llaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
,
Johnson
,
A. T.
, and
Fischer
,
J. E.
,
2002
, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
,
80
(
15
), pp.
2767
2769
.
13.
Guthy
,
C.
,
Du
,
F.
,
Brand
,
S.
,
Winey
,
K. I.
, and
Fischer
,
J. E.
,
2007
, “
Thermal Conductivity of Single-Walled Carbon Nanotube/PMMA Nanocomposites
,”
ASME J. Heat Transfer
,
129
(
8
), pp.
1096
1099
.
14.
Bonnet
,
P.
,
Sireude
,
D.
,
Garnier
,
B.
, and
Chauvet
,
O.
,
2007
, “
Thermal Properties and Percolation in Carbon Nanotube-Polymer Composites
,”
Appl. Phys. Lett.
,
91
(
20
), p.
201910
.
15.
Gojny
,
F. H.
,
Wichmann
,
M. H. G.
,
Fiedler
,
B.
,
Kinloch
,
I. A.
,
Bauhofer
,
W.
,
Windle
,
A. H.
, and
Schulte
,
K.
,
2006
, “
Evaluation and Identification of Electrical and Thermal Conduction Mechanisms in Carbon Nanotube/Epoxy Composites
,”
Polymer
,
47
(
6
), pp.
2036
2045
.
16.
Prasher
,
R. S.
,
Hu
,
X. J.
,
Chalopin
,
Y.
,
Mingo
,
N.
,
Lofgreen
,
K.
,
Volz
,
S.
,
Cleri
,
F.
, and
Keblinski
,
P.
,
2009
, “
Turning Carbon Nanotubes From Exceptional Heat Conductors Into Insulators
,”
Phys. Rev. Lett.
,
102
(
10
), p.
105901
.
17.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
,
2003
, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nat. Mater.
,
2
(
11
), pp.
731
734
.
18.
Marconnet
,
A. M.
,
Yamamoto
,
N.
,
Panzer
,
M. A.
,
Wardle
,
B. L.
, and
Goodson
,
K. E.
,
2011
, “
Thermal Conduction in Aligned Carbon Nanotube-Polymer Nanocomposites With High Packing Density
,”
ACS Nano
,
5
(
6
), pp.
4818
4825
.
19.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
,
2007
, “
Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
92
100
.
20.
Cola
,
B. A.
,
Xu
,
J.
,
Cheng
,
C.
,
Xu
,
X.
,
Fisher
,
T. S.
, and
Hu
,
H.
,
2007
, “
Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces
,”
J. Appl. Phys.
,
101
(
5
), p.
054313
.
21.
Panzer
,
M. A.
,
Zhang
,
G.
,
Mann
,
D.
,
Hu
,
X.
,
Pop
,
E.
,
Dai
,
H.
, and
Goodson
,
K. E.
,
2008
, “
Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays
,”
ASME J. Heat Transfer
,
130
(
5
), p.
052401
.
22.
Hone
,
J.
,
Llaguno
,
M. C.
,
Nemes
,
N. M.
,
Johnson
,
A. T.
,
Fischer
,
J. E.
,
Walters
,
D. A.
,
Casavant
,
M. J.
,
Schmidt
,
J.
, and
Smalley
,
R. E.
,
2000
, “
Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films
,”
Appl. Phys. Lett.
,
77
(
5
), pp.
666
668
.
23.
Yang
,
D. J.
,
Zhang
,
Q.
,
Chen
,
G.
,
Yoon
,
S. F.
,
Ahn
,
J.
,
Wang
,
S. G.
,
Zhou
,
Q.
,
Wang
,
Q.
, and
Li
,
J. Q.
,
2002
, “
Thermal Conductivity of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
,
66
(
16
), p.
165440
.
24.
Hata
,
K.
,
Futaba
,
D. N.
,
Mizuno
,
K.
,
Namai
,
T.
,
Yumura
,
M.
, and
Iijima
,
S.
,
2004
, “
Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes
,”
Science
,
306
(
5700
), pp.
1362
1364
.
25.
Futaba
,
D. N.
,
Hata
,
K.
,
Namai
,
T.
,
Yamada
,
T.
,
Mizuno
,
K.
,
Hayamizu
,
Y.
,
Yumura
,
M.
, and
Iijima
,
S.
,
2006
, “
84% Catalyst Activity of Water-Assisted Growth of Single Walled Carbon Nanotube Forest Characterization by a Statistical and Macroscopic Approach
,”
J. Phys. Chem. B
,
110
(
15
), pp.
8035
8038
.
26.
Amama
,
P. B.
,
Pint
,
C. L.
,
McJilton
,
L.
,
Kim
,
S. M.
,
Stach
,
E. A.
,
Murray
,
P. T.
,
Hauge
,
R. H.
, and
Maruyama
,
B.
,
2009
, “
Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpets
,”
Nano Lett.
,
9
(
1
), pp.
44
49
.
27.
Nessim
,
G. D.
,
Hart
,
A. J.
,
Kim
,
J. S.
,
Acquaviva
,
D.
,
Oh
,
J.
,
Morgan
,
C. D.
,
Seita
,
M.
,
Leib
,
J. S.
, and
Thompson
,
C. V.
,
2008
, “
Tuning of Vertically-Aligned Carbon Nanotube Diameter and Areal Density Through Catalyst Pre-Treatment
,”
Nano Lett.
,
8
(
11
), pp.
3587
3593
.
28.
Lu
,
Q.
,
Keskar
,
G.
,
Ciocan
,
R.
,
Rao
,
R.
,
Mathur
,
R. B.
,
Rao
,
A. M.
, and
Larcom
,
L. L.
,
2006
, “
Determination of Carbon Nanotube Density by Gradient Sedimentation
,”
J. Phys. Chem. B
,
110
(
48
), pp.
24371
24376
.
29.
Cahill
,
D. G.
,
2004
, “
Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance
,”
Rev. Sci. Instrum.
,
75
(
12
), pp.
5119
5122
.
30.
Ohsone
,
Y.
,
Wu
,
G.
,
Dryden
,
J.
,
Zok
,
F.
, and
Majumdar
,
A.
,
1999
, “
Optical Measurement of Thermal Contact Conductance Between Wafer-Like Thin Solid Samples
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
954
963
.
31.
Chang
,
C. W.
,
Okawa
,
D.
,
Garcia
,
H.
,
Majumdar
,
A.
, and
Zettl
,
A.
,
2007
, “
Nanotube Phonon Waveguide
,”
Phys. Rev. Lett.
,
99
(
4
), p.
045901
.
You do not currently have access to this content.