This paper presents a numerical study aimed at identifying a suitable turbulence model to describe the fully developed turbulent mixed convention of air in smooth horizontal pipes. The flow characteristics considered here are relevant to those typically observed in ventilated hollow core slab (VHCS) applications and, because of this, the adopted geometry and boundary conditions are represented by the Reynolds number and Richardson number of about 23,000 and 1.04, respectively. Empirical expressions available in the literature are used as reference to evaluate the accuracy of different turbulence models in predicting the dimensionless velocity (u+) and temperature (T+) profiles as well as the Nusselt number (Nu). Among the turbulence models considered, the standard and realizable k-ε models provide the best overall predictions of u+, T+, and Nu in the fully developed flow, and the former is recommended for the modeling of VHCS systems as it gives slightly better estimates of the Nu values.

References

1.
Winwood
,
R.
,
Benstead
,
R.
,
Mashrae
,
M.
, and
Edwards
,
R.
,
1997
, “
Advanced Fabric Energy Storage I: Review
,”
Build. Serv. Eng. Res. Technol.
,
18
(
1
), pp.
1
6
.
2.
Cheung
,
C.
, and
Fuller
,
R.
,
2007
, “
Advanced Fabric Energy Storage Systems in Australia
,”
EcoLibrium
,
6
(
2
), pp.
24
32
.
3.
Standeven
,
M.
,
Cohen
,
R.
,
Bordass
,
B.
, and
Leaman
,
A.
,
1998
, “
PROBE 14: Elizabeth Fry Building
,”
Build. Serv. J.
,
20
, pp.
37
42
.
4.
Shaw
,
M. R.
,
Treadaway
,
K. W.
, and
Willis
,
S. T. P.
,
1994
, “
Effective Use of Building Mass
,”
Renewable Energy
,
5
(
5–8
), pp.
1028
1038
.
5.
Barnard
,
N.
,
1994
,
Dynamic Energy Storage in the Building Fabric
,
Building Services Research and Information Association (BSRIA)
,
Bracknell, UK
, p.
28
.
6.
Ren
,
M. J.
, and
Wright
,
J. A.
,
1998
, “
A Ventilated Slab Thermal Storage System Model
,”
Build. Environ.
,
33
(
1
), pp.
43
52
.
7.
Winwood
,
R.
,
Benstead
,
R.
,
Mashrae
,
M.
,
Edwards
,
R.
, and
Letherman
,
K.
,
1994
, “
Building Fabric Thermal Storage: Use of Computational Fluid Dynamics for Modeling
,”
Build. Serv. Eng. Res. Technol.
,
15
(
3
), pp.
171
178
.
8.
Petukhov
,
B. S.
, and
Polyakov
,
A. F.
,
1988
,
Heat Transfer in Turbulent Mixed Convection
,
Hemisphere
,
New York
.
9.
Grassi
,
W.
, and
Testi
,
D.
,
2007
, “
Evaluation of Two RANS Turbulence Models in Predicting Developing Mixed Convection Within a Heated Horizontal Pipe
,”
Int. J. Comput. Fluid Dyn.
,
21
(
7–8
), pp.
267
276
.
10.
Grassi
,
W.
, and
Testi
,
D.
,
2006
, “
Heat Transfer Correlations for Turbulent Mixed Convection in the Entrance Region of a Uniformly Heated Horizontal Tube
,”
ASME J. Heat Transfer
,
128
(
10
), pp.
1103
1107
.
11.
Wilcox
,
D. C.
,
1998
,
Turbulence Modelling for CFD
,
DCW Industries
,
La Canada, CA
.
12.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
13.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
14.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
15.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.
16.
ANSYS
,
2011
, Ansys Fluent Theory Guide, Vol.
14
,
ANSYS
,
Canonsburg, PA
.
17.
Wolfshtein
,
M.
,
1969
, “
The Velocity and Temperature Distribution in One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
301
318
.
18.
Mench
,
M. M.
,
2008
,
Fuel Cell Engines
,
Wiley
,
Hoboken, NJ
.
19.
Lienhard
,
J. H.
, IV
, and
Lienhard
,
J. H.
, V
,
2008
,
A Heat Transfer Textbook
, 3rd ed.,
Phlogiston Press
,
Cambridge, MA
.
20.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat Transfer
,
Wiley
, Hoboken, NJ.
21.
Mori
,
Y.
, and
Futagami
,
K.
,
1967
, “
Forced Convective Heat Transfer in Uniformly Heated Horizontal Tubes (2nd Report, Theoretical Study)
,”
Int. J. Heat Mass Transfer
,
10
(
12
), pp.
1801
1813
.
22.
Polyakov
,
A. F.
,
1974
, “
Development of Secondary Free-Convection Currents in Forced Turbulent Flow in Horizontal Tubes
,”
ASME J. Appl. Mech. Tech. Phys.
,
15
(
5
), pp.
632
637
.
23.
Kader
,
B. A.
,
1981
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.
24.
McKeon
,
B. J.
,
Li
,
J.
,
Jiang
,
W.
,
Morrison
,
J. F.
, and
Smits
,
A. J.
,
2004
, “
Further Observations on the Mean Velocity Distribution in Fully Developed Pipe Flow
,”
J. Fluid Mech.
,
501
, pp.
135
147
.
25.
Nagib
,
H. M.
, and
Chauhan
,
K. A.
,
2008
, “
Variations of von Kármán Coefficient in Canonical Flows
,”
Phys. Fluids
,
20
(
10
), pp.
1518
1528
.
26.
Reynolds
,
O.
,
1964
, “
On the Extent and Action of the Heating Surface for Steam Boilers
,” Int. J. Heat Mass Transfer, 3(2), pp. 163–166 [Reprint of 1874,
Proc. Lit. Philos. Soc. Manchester
,
14
, pp.
7
12
].
27.
Colburn
,
A. P.
,
1964
, “
A Method of Correlating Forced Convection Heat Transfer Data and a Comparison With Fluid Friction
,” Int. J. Heat Mass Transfer, 7(12), pp. 1359–1384 [Reprint of 1933,
Trans. AIChE
,
29
, pp.
174
210
].
28.
Boelter
,
L. M. K.
,
Cherry
,
V. H.
,
Johnson
,
H. A.
, and
Martinelli
,
R. C.
,
1965
,
Heat Transfer Notes
,
McGraw-Hill
,
New York
.
29.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
.
30.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
31.
Corgnati
,
S. P.
, and
Kindinis
,
A.
,
2007
, “
Thermal Mass Activation by Hollow Core Slab Coupled With Night Ventilation to Reduce Summer Cooling Loads
,”
Build. Environ.
,
42
(
9
), pp.
3285
3297
.
32.
Barton
,
P.
,
Beggs
,
C. B.
, and
Sleigh
,
P. A.
,
2002
, “
A Theoretical Study of the Thermal Performance of the TermoDeck Hollow Core Slab System
,”
Appl. Therm. Eng.
,
22
(
13
), pp.
1485
1499
.
33.
Sleicher
,
C. A.
,
1958
, “Heat Transfer in a Pipe With Turbulent Flow and Arbitrary Wall-Temperature Distribution,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
34.
Abbrecht
,
P. H.
, and
Churchill
,
S. W.
,
1960
, “
The Thermal Entrance Region in Fully Developed Turbulent Flow
,”
AIChE J.
,
6
(
2
), pp.
268
273
.
35.
Barnes
,
J. F.
,
1961
, “
An Experimental Investigation of Heat Transfer From the Inside Surface of a Hot Smooth Tube to Air, Helium and Carbon Dioxide
,” Aeronautical Research Council, Ministry of Aviation, London, Reports and Memoranda No. 3246.
36.
Mundhe
,
S. V.
, and
Deshmukh
,
P. W.
,
2014
, “
Experimental Analysis of Heat Transfer for Turbulent Flow Through Circular Pipe
,”
Int. J. Innovative Res. Adv. Eng.
,
1
(
3
), pp.
70
75
.
37.
Winterton
,
R. H. S.
,
1998
, “
Where Did the Dittus and Boelter Equation Come From?
,”
Int. J. Heat Mass Transfer
,
41
(
4–5
), pp.
809
810
.
38.
Coles
,
D.
,
1956
, “
The Law of the Wake in the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
1
(
2
), pp.
191
226
.
39.
Barenblatt
,
G. I.
,
Chorin
,
A. J.
, and
Prostokishin
,
V. M.
,
1997
, “
Scaling Laws for Fully Developed Turbulent Flow in Pipes
,”
ASME Appl. Mech. Rev.
,
50
(
7
), pp.
413
429
.
40.
Spalart
,
P.
,
Jou
,
W.
,
Strelets
,
M.
, and
Allmaras
,
S.
,
1997
, “
Comments of Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
First AFSOR International Conference on DNS/LES
, Louisiana Tech University, Ruston, LA, Aug. 4–8, pp.
137
147
.
You do not currently have access to this content.