The predictions of flow structure, vortex shedding, and drag force around a circular cylinder are promoted by both academic interest and a wide range of practical situations. To control the flow around a circular cylinder, a magnetic obstacle is set upstream of the circular cylinder in this study for active controlling the separated flow behind bluff obstacle. Moreover, the changing of position, size, and intensity of magnetic obstacle is easy. The governing parameters are the magnetic obstacle width (d/D = 0.0333, 0.1, and 0.333) selected on cylinder diameter, D, and position (L/D) ranging from 2 to 11.667 at fixed Reynolds number Rel (based on the half-height of the duct) of 300 and the relative magnetic effect given by the Hartmann number Ha of 52. Results are presented in terms of instantaneous contours of vorticity, streamlines, drag coefficient, Strouhal number, pressure drop penalty, and local and average Nusselt numbers for various magnetic obstacle widths and positions. The computed results show that there are two flow patterns, one with vortex shedding from the magnetic obstacle and one without vortex shedding. The optimum conditions for drag reduction are L/D = 2 and d/D = 0.0333–0.333, and under these conditions, the pressure drop penalty is acceptable. However, the maximum value of the mean Nusselt number of the downstream cylinder is about 93% of that for a single cylinder.

References

1.
Buyruk
,
E.
,
Johnson
,
M. W.
, and
Owen
,
I.
,
1998
, “
Numerical and Experimental Study of Flow and Heat Transfer Around a Tube in Cross-Flow at Low Reynolds Number
,”
Int. J. Heat Fluid Flow
,
19
(
3
), pp.
223
232
.
2.
Yoon
,
H. S.
,
Lee
,
J. B.
,
Seo
,
J. H.
, and
Park
,
H. S.
,
2010
, “
Characteristics for Flow and Heat Transfer Around a Circular Cylinder Near a Moving Wall in Wide Range of Low Reynolds Number
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5111
5120
.
3.
Hussam
,
W. K.
, and
Sheard
,
G. J.
,
2013
, “
Heat Transfer in a High Hartmann Number MHD Duct Flow With a Circular Cylinder Placed Near the Heated Side-Wall
,”
Int. J. Heat Mass Transfer
,
67
, pp.
944
954
.
4.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
477
539
.
5.
Zhang
,
H. Q.
,
Fey
,
H.
, and
Noack
,
B.
,
1995
, “
On the Transition of the Cylinder Wake
,”
Phys. Fluids
,
7
(
4
), pp.
779
794
.
6.
Zdravkovich
,
M. M.
,
2003
,
Flow Around Circular Cylinders, Vol. 2: Applications
,
Oxford University Press
,
New York
.
7.
Hwang
,
J. Y.
, and
Yang
,
K. S.
,
2007
, “
Drag Reduction on a Circular Cylinder Using Dual Detached Splitter Plates
,”
J. Wind Eng. Ind. Aerodyn.
,
95
(
7
), pp.
551
564
.
8.
Gaster
,
M.
,
1969
, “
Vortex Shedding From Slender Cones at Low Reynolds Numbers
,”
J. Fluid Mech.
,
38
(
3
), pp.
565
576
.
9.
Kuo
,
C. H.
, and
Chen
,
C. C.
,
2009
, “
Passive Control of Wake Flow by Two Small Control Cylinders at Reynolds Number 80
,”
J. Fluids Struct.
,
25
(
6
), pp.
1021
1028
.
10.
Tsutsui
,
T.
, and
Igarashi
,
T.
,
2002
, “
Drag Reduction of a Circular Cylinder in an Air-Stream
,”
J. Wind Eng. Ind. Aerodyn.
,
90
(
4–5
), pp.
527
541
.
11.
Zhang
,
P. F.
,
Wang
,
J. J.
, and
Huang
,
L. X.
,
2006
, “
Numerical Simulation of Flow Around Cylinder With an Upstream Rod in Tandem at Low Reynolds Numbers
,”
Appl. Ocean Res.
,
28
(
3
), pp.
183
192
.
12.
Wang
,
J. J.
,
Zhang
,
P. F.
,
Lu
,
S. F.
, and
Wu
,
K.
,
2006
, “
Drag Reduction of a Circular Cylinder Using an Upstream Rod
,”
Flow, Turbul. Combust.
,
76
(
1
), pp.
83
101
.
13.
Keser
,
H. I.
, and
Unal
,
M. F.
,
2003
, “
Flow Around a Circular Cylinder Downstream of a Blunt-Based Flat Plate in Tandem and Staggered Arrangements
,”
J. Fluids Struct.
,
17
(
6
), pp.
783
791
.
14.
Park
,
D. S.
,
Ladd
,
D. M.
, and
Hendricks
,
E. W.
,
1994
, “
Feedback Control of von Karman Vortex Shedding Behind a Circular Cylinder at Low Reynolds Number
,”
Phys. Fluids
,
6
(
7
), pp.
2390
2405
.
15.
Kang
,
S. M.
,
Choi
,
H. C.
, and
Lee
,
S. S.
,
1999
, “
Laminar Flow Past a Rotating Circular Cylinder
,”
Phys. Fluids
,
11
(
11
), pp.
3312
3321
.
16.
Choi
,
S.
,
Choi
,
H.
, and
Kang
,
S.
,
2002
, “
Characteristics of Flow Over a Rotationally Oscillating Cylinder at Low Reynolds Number
,”
Phys. Fluids
,
14
(
8
), pp.
2767
2777
.
17.
Singha
,
S.
,
Sinhamahapatra
,
K. P.
, and
Mukherjea
,
S. K.
,
2006
, “
Control of Vortex Shedding From a Bluff Body Using Imposed Magnetic Field
,”
ASME J. Fluids Eng.
,
129
(
5
), pp.
517
523
.
18.
Chatterjee
,
D.
,
Chatterjee
,
K.
, and
Mondal
,
B.
,
2012
, “
Control of Flow Separation Around Bluff Obstacles by Transverse Magnetic Field
,”
ASME J. Fluids Eng.
,
134
(
9
), p.
091102
.
19.
Chatterjee
,
D.
, and
Chatterjee
,
K.
,
2013
, “
Unconfined Flow and Heat Transfer Around a Square Cylinder at Low Reynolds and Hartmann Numbers
,”
Int. J. Fluid Mech. Res.
,
40
(
1
), pp.
71
90
.
20.
Weier
,
T.
,
Gerbeth
,
G.
,
Mutschke
,
G.
,
Lielausis
,
O.
, and
Lammers
,
G.
,
2003
, “
Control of Flow Separation Using Electromagnetic Forces
,”
Flow, Turbul. Combust.
,
71
(
1–4
), pp.
5
17
.
21.
Chen
,
Z. H.
,
Fan
,
B. C.
, and
Nadine
,
A.
,
2006
, “
Electro-Magnetic Control of Vortex Shedding Behind a Circular Cylinder
,”
Chin. Phys. Lett.
,
23
(
1
), pp.
154
157
.
22.
Cuevas
,
S.
,
Smolentsev
,
S.
, and
Abdou
,
M.
,
2006
, “
On the Flow Past a Magnetic Obstacle
,”
J. Fluid Mech.
,
553
, pp.
227
252
.
23.
Votyakov
,
E. V.
,
Zienicke
,
E.
, and
Kolesnikov
,
Y.
,
2008
, “
Constrained Flow Around a Magnetic Obstacle
,”
J. Fluid Mech.
,
610
, pp.
131
156
.
24.
Votyakov
,
E. V.
, and
Kassinos
,
S. C.
,
2009
, “
On the Analogy Between Streamlined Magnetic and Solid Obstacle
,”
Phys. Fluids
,
21
(
9
), p.
097102
.
25.
Zhang
,
X. D.
, and
Huang
,
H. L.
,
2013
, “
Effect of Local Magnetic Fields on Electrically Conducting Fluid Flow and Heat Transfer
,”
ASME J. Heat Transfer
,
135
(
2
), p.
021702
.
26.
Zhang
,
X. D.
, and
Huang
,
H. L.
,
2014
, “
Effect of Magnetic Obstacle on Fluid Flow and Heat Transfer in a Rectangular Duct
,”
Int. Commun. Heat Mass Transfer
,
51
, pp.
31
38
.
27.
Zhang
,
X. D.
, and
Huang
,
H. L.
,
2013
, “
Blockage Effects on Viscous Fluid Flow and Heat Transfer Past a Magnetic Obstacle in a Duct
,”
Chin. Phys. B
,
22
(
7
), p.
075202
.
28.
Bentley
,
J. P.
, and
Benson
,
R. A.
,
1993
, “
Design Conditions for Optimal Dual Bluff Body Vortex Flow Meters
,”
Flow Meas. Instrum.
,
4
(
4
), pp.
205
213
.
29.
Samsami
,
F.
,
Thess
,
A.
, and
Kolesnikov
,
Y.
,
2011
, “
Experimental Investigation of Transition to Turbulence in a Magnetic Obstacle
,”
Euromech Colloquium 525-Instabilities and Transition in Three-Dimensional Flows With Rotation
, Ecully, France, pp. 1–2.
30.
Ni
,
M. J.
,
Munipalli
,
R.
, and
Morley
,
N. B.
,
2007
, “
A Current Density Conservative Scheme for Incompressible MHD Flows at a Low Magnetic Reynolds Number. Part I: On a Rectangular Collocated Grid System
,”
J. Comput. Phys.
,
227
(
1
), pp.
174
204
.
31.
Tsutsui
,
T.
, and
Igarashi
,
T.
,
2006
, “
Heat Transfer Enhancement of a Circular Cylinder
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
226
233
.
32.
Karanth
,
D.
,
Rankin
,
G. W.
, and
Sridhar
,
D.
,
1994
, “
A Finite Difference Calculation of Forced Convective Heat Transfer From an Oscillating Cylinder
,”
Int. J. Heat Mass Transfer
,
37
(
11
), pp.
1619
1630
.
33.
Mahir
,
N.
, and
Altaç
,
Z.
,
2008
, “
Numerical Investigation of Convective Heat Transfer in Unsteady Flow Past Two Cylinders in Tandem Arrangements
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1309
1318
.
34.
Seyyedi
,
S. M.
,
Bararnia
,
H.
,
Ganji
,
D. D.
,
Gorji-Bandpy
,
M.
, and
Soleimani
,
S.
,
2012
, “
Numerical Investigation of the Effect of a Splitter Plate on Forced Convection in a Two Dimensional Channel With an Inclined Square Cylinder
,”
Int. J. Therm. Sci.
,
61
, pp.
1
14
.
You do not currently have access to this content.