In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nanostructures was achieved using catalytic chemical vapor deposition process on a 50 μm nickel wire at 650 °C. Due to their extremely high thermal conductivity, CNFs are used to augment/modify heat transfer surface. However, the inevitable layer of a-C that occurs during the synthesis of the CNFs layer exhibits low thermal conductivity which may result in insulating the surface. In contrast, the amorphous layer helps in supporting and mechanically stabilizing the CNFs layer attachment to the polycrystalline nickel (Ni270) substrate material. To better understand the influences of these two layers on heat transfer, the growth mechanism of the CNFs layer and the layer of carbon is investigated and growth model is proposed. The combined impact of both a-C and CNFs layers on heat transfer performance is studied on three different samples which were synthesized by varying the deposition period (16 min, 23 min, and 30 min). The microwire samples covered with CNF layers were subjected to a uniform flow from a nozzle. Heat transfer measurement was achieved by a controlled heat dissipation through the microwire to attain a constant temperature during the flow. This measurement technique is adopted from hot wire anemometry calibration method. Maximum heat transfer enhancement of 18% was achieved. This enhancement is mainly attributed to the surface roughness and surface area increase of the samples with moderate CNFs surface area coverage on the sample.

References

1.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
(
6348
), pp.
56
58
.10.1038/354056a0
2.
Liu
,
M.-S.
,
Lin
,
M. C.-C.
,
Huang
,
I. T.
, and
Wang
,
C.-C.
,
2005
, “
Enhancement of Thermal Conductivity With Carbon Nanotube for Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
32
(
9
), pp.
1202
1210
.10.1016/j.icheatmasstransfer.2005.05.005
3.
Park
,
K.-J.
, and
Jung
,
D.
,
2007
, “
Enhancement of Nucleate Boiling Heat Transfer Using Carbon Nanotubes
,”
Int. J. Heat Mass Transfer
,
50
(
21–22
), pp.
4499
4502
.10.1016/j.ijheatmasstransfer.2007.03.012
4.
Launay
,
S.
,
Fedorov
,
A. G.
,
Joshi
,
Y.
,
Cao
,
A.
, and
Ajayan
,
P. M.
,
2006
, “
Hybrid Micro-Nano Structured Thermal Interfaces for Pool Boiling Heat Transfer Enhancement
,”
Microelectron. J.
,
37
(
11
), pp.
1158
1164
.10.1016/j.mejo.2005.07.016
5.
Liu
,
Z.-H.
, and
Liao
,
L.
,
2010
, “
Forced Convective Flow and Heat Transfer Characteristics of Aqueous Drag-Reducing Fluid With Carbon Nanotubes Added
,”
Int. J. Therm. Sci.
,
49
(
12
), pp.
2331
2338
.10.1016/j.ijthermalsci.2010.08.001
6.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
Mceuen
,
P. L.
,
2001
, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
,
87
(
21
), p.
215502
.10.1103/PhysRevLett.87.215502
7.
Sinha
,
S.
,
Barjami
,
S.
,
Iannacchione
,
G.
,
Schwab
,
A.
, and
Muench
,
G.
,
2005
, “
Off-Axis Thermal Properties of Carbon Nanotube Films
,”
J. Nanopart. Res.
,
7
(
6
), pp.
651
657
.10.1007/s11051-005-8382-9
8.
Xie
,
H.
,
Cai
,
A.
, and
Wang
,
X.
,
2007
, “
Thermal Diffusivity and Conductivity of Multiwalled Carbon Nanotube Arrays
,”
Phys. Lett. A,
369
(
1–2
), pp.
120
123
.10.1016/j.physleta.2007.02.079
9.
Mo
,
Z.
,
Morjan
,
R.
,
Anderson
,
J.
,
Campbell
,
E. E. B.
, and
Johan
,
L.
,
2005
, “
Integrated Nanotube Microcooler for Microelectronics Applications
,”
Proceedings of the 55th Electronic Components and Technology Conference
,
Orlando
,
FL
, May 31 June 3, Vol.
1
, pp.
51
54
.
10.
Kordás
,
K.
,
Tóth
,
G.
,
Moilanen
,
P.
,
Kumpumäki
,
M.
,
Vähäkangas
,
J.
,
Uusimäki
,
A.
,
Vajtai
,
R.
, and
Ajayan
,
P. M.
,
2007
, “
Chip Cooling With Integrated Carbon Nanotube Microfin Architectures
,”
Appl. Phys. Lett.
,
90
(
12
), p.
123105
.10.1063/1.2714281
11.
Tuzovskaya
,
I.
,
Pacheco Benito
,
S.
,
Chinthaginjala
,
J. K.
,
Reed
,
C.
,
Lefferts
,
L.
, and
Van Der Meer
,
T.
,
2012
, “
Heat Exchange Performance of Stainless Steel and Carbon Foams Modified With Carbon Nano Fibers
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5769
5776
.10.1016/j.ijheatmasstransfer.2012.05.073
12.
Taha
,
T. J.
,
Thakur
,
D. B.
, and
Meer
,
T. H. V. D.
,
2012
, “
Towards Convective Heat Transfer Enhancement: Surface Modification, Characterization and Measurement Techniques
,”
J. Phys.: Conf. Ser.
,
395
(
1
), p.
012113
.10.1088/1742-6596/395/1/012113
13.
Taha
,
T. J.
, and
Van Der
,
M. T. H.
,
2013
, “
Influence of CNFs Layer Morphology on Convective Heat Transfer Behavior
,”
Proceedings of the 8th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics
, Lisbon, June 16–20, Paper No. 63.
14.
Hammerschmidt
,
A.
,
Mandel
,
T.
,
Frischholz
,
M.
, and
Helbig
,
R.
,
1994
, “
Improved Electronic Properties of Diamond-Like Carbon Films by High Pressure Post-Deposition Treatment
,”
Diamond Relat. Mater.
,
3
(
4–6
), pp.
980
982
.10.1016/0925-9635(94)90312-3
15.
Falabella
,
S.
,
Boercker
,
D. B.
, and
Sanders
,
D. M.
,
1993
, “
Fabrication of Amorphous Diamond Films
,”
Thin Solid Films
,
236
(
1–2
), pp.
82
86
.10.1016/0040-6090(93)90647-8
16.
Chen
,
G.
,
Hui
,
P.
, and
Xu
,
S.
,
2000
, “
Thermal Conduction in Metalized Tetrahedral Amorphous Carbon (ta–C) Films on Silicon
,”
Thin Solid Films
,
366
(
1–2
), pp.
95
99
.10.1016/S0040-6090(99)01097-4
17.
Chen
,
G.
, and
Hui
,
P.
,
1999
, “
Pulsed Photothermal Modeling of Composite Samples Based on Transmission-Line Theory of Heat Conduction
,”
Thin Solid Films
,
339
(
1–2
), pp.
58
67
.10.1016/S0040-6090(98)01062-1
18.
Alwi
,
H. A.
,
Kim
,
Y. Y.
,
Awang
,
R.
,
Rahman
,
S. A.
, and
Krishnaswamy
,
S.
,
2013
, “
Measurement of Thermophysical Properties of Hydrogenated Amorphous Carbon Thin Films Using Picosecond Thermoreflectance Technique
,”
Int. J. Heat Mass Transfer
,
63
, pp.
199
203
.10.1016/j.ijheatmasstransfer.2013.03.062
19.
Morath
,
C. J.
,
Maris
,
H. J.
,
Cuomo
,
J. J.
,
Pappas
,
D. L.
,
Grill
,
A.
,
Patel
,
V. V.
,
Doyle
,
J. P.
, and
Saenger
,
K. L.
,
1994
, “
Picosecond Optical Studies of Amorphous Diamond and Diamondlike Carbon: Thermal Conductivity and Longitudinal Sound Velocity
,”
J. Appl. Phys.
,
76
(
5
), pp.
2636
2640
.10.1063/1.357560
20.
Bullen
,
A. J.
,
O’hara
,
K. E.
,
Cahill
,
D. G.
,
Monteiro
,
O.
, and
Von Keudell
,
A.
,
2000
, “
Thermal Conductivity of Amorphous Carbon Thin Films
,”
J. Appl. Phys.
,
88
(
11
), pp.
6317
6320
.10.1063/1.1314301
21.
Chinthaginjala
,
J. K.
,
Thakur
,
D. B.
,
Seshan
,
K.
, and
Lefferts
,
L.
,
2008
, “
How Carbon-Nano-Fibers Attach to Ni Foam
,”
Carbon
,
46
(
13
), pp.
1638
1647
.10.1016/j.carbon.2008.07.002
22.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
23.
Jarrah
,
N. A.
,
Van Ommen
,
J. G.
, and
Lefferts
,
L.
,
2006
, “
Mechanistic Aspects of the Formation of Carbon-Nanofibers on the Surface of Ni Foam: A New Microstructured Catalyst Support
,”
J. Catal.
,
239
(
2
), pp.
460
469
.10.1016/j.jcat.2006.02.021
24.
Shamshi Hassan
,
M.
,
Amna
,
T.
,
Hwang
,
I. H.
, and
Khil
,
M.-S.
,
2013
, “
One-Step Facile Construction of High Aspect Ratio Fe3O4 Decorated CNFs With Distinctive Porous Morphology: Potential Multiuse Expectations
,”
Colloids Surf., B
,
106
, pp.
170
175
.10.1016/j.colsurfb.2013.01.040
25.
Pacheco Benito
,
S.
, and
Lefferts
,
L.
,
2011
, “
Wettability of Carbon Nanofiber Layers on Nickel Foils
,”
J. Colloid Interface Sci.
,
364
(
2
), pp.
530
538
.10.1016/j.jcis.2011.08.039
You do not currently have access to this content.