The effects of entrainment accompanying mass, momentum, and energy transport from the keyhole wall on keyhole collapse during high-power-density laser or electron beam drilling are theoretically and systematically investigated in this study. High intensity beam drilling is widely used in components, packaging and manufacturing technologies, micro-electromechanical-systems (MEMS), rapid prototyping manufacturing, and keyhole welding. This study proposes a quasi-steady, one-dimensional transport model to predict supersonic and subsonic flow behavior of the two-phase, vapor–liquid dispersion in a keyhole and applies the Young–Laplace equation to calculate the keyhole shape. The results show that the keyhole collapse, representing decreased or vanished radius, is susceptible to mass ejection at the base and entrainment from the side wall. Deposition of a mixture of gas and droplets in the keyhole stabilizes deformation of the keyhole. Enhanced energy and decreased axial component of momentum associated with entrainment are also apt to keyhole collapse. The predicted results agree with axial variations of transport variables of a compressible flow through a divergent and convergent nozzle, and their exact analytical solutions in the absence of friction, energy absorption, and entrainment. An understanding of the effects of ejected and entrained mass in the keyhole on drilling efficiency is therefore provided.

References

1.
Ho
,
C. M.
, and
Tai
,
Y. C.
,
1998
, “
Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
579
612
.10.1146/annurev.fluid.30.1.579
2.
Lau
,
J. H.
, and
Lee
,
S. W. R.
,
1999
,
Chip Scale Package, CSP: Design, Materials, Process, Reliability, and Applications
,
McGraw-Hill
,
New York
.
3.
Lee
,
S. H.
, and
Dornfeld
,
D. A.
,
2001
, “
Precision Laser Deburring
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
601
608
.10.1115/1.1381007
4.
DebRoy
,
T.
, and
David
,
S. A.
,
1995
, “
Physical Processes in Fusion Welding
,”
Rev. Mod. Phys.
,
67
(1), pp.
85
112
.10.1103/RevModPhys.67.85
5.
Steen
,
W. M.
,
1991
,
Laser Material Processing
,
Springer-Verlag
,
New York
.10.1007/978-1-4471-3820-4
6.
Duley
,
W. W.
,
1999
,
Laser Welding
,
Wiley
,
New York
.
7.
Imen
,
K.
, and
Allen
,
S. D.
,
1999
, “
Pulse CO2 Laser Drilling of Green Alumina Ceramic
,”
IEEE Trans. Adv. Packag.
,
22
(
4
), pp.
620
623
.10.1109/6040.803454
8.
Gan
,
E. K. W.
,
Zheng
,
H. Y.
, and
Lim
,
G. C.
,
2000
, “
Laser Drilling of Micro-Vias in PCB Substrates
,”
Proceedings of the Electronics Packaging Technology Conference
,
Singapore, Dec. 5–7, IEEE
,
Piscataway
, NJ, pp.
321
326
.10.1109/EPTC.2000.906394
9.
Illyefalvi-Vitez
,
Z.
,
2000
, “
Laser Processing of Adhesive and Polymeric Materials for Microelectronics Packaging Applications
,”
Proceedings of the 4th International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing
,
Espoo
,
Finland
, June 18–21, IEEE, Piscataway, NJ, pp.
289
295
.10.1109/ADHES.2000.860622
10.
Dietrich
,
J.
,
Brajdic
,
M.
,
Walther
,
K.
,
Horn
,
A.
,
Kelbassa
,
I.
, and
Poprawe
,
R.
,
2008
, “
Investigation of Increased Drilling Speed by Online High-Speed Photography
,”
Opt. Lasers Eng.
,
46
(
10
), pp.
705
710
.10.1016/j.optlaseng.2008.05.010
11.
Yilbas
,
B. S.
,
1995
, “
Study of Liquid and Vapor Ejection Processes During Laser Drilling of Metals
,”
J. Laser Appl.
,
7
(
3
), pp.
147
152
.10.2351/1.4745388
12.
Kononenko
,
T. V.
,
Konov
,
V. I.
,
Garnov
,
S. V.
,
Klimentov
,
S. M.
, and
Dausinger
,
F.
,
2001
, “
Dynamics of Deep Short Pulse Laser Drilling: Ablative Stages and Light Propagation
,”
Laser Phys.
,
11
(3), pp.
343
351
.
13.
DeBastiani
,
D. L.
,
Modest
,
M. F.
, and
Stubican
,
V. S.
,
1990
, “
Mechanism of Material Removal From Silicon Carbide by Carbon Dioxide Laser Heating
,”
J. Am. Ceram. Soc.
,
73
(
7
), pp.
1947
1952
.10.1111/j.1151-2916.1990.tb05250.x
14.
Basu
,
S.
, and
DebRoy
,
T.
,
1992
. “
Liquid Metal Expulsion During Laser Irradiation
,”
J. Appl. Phys.
,
72
(
8
), pp.
3317
3322
.10.1063/1.351452
15.
Low
,
D. K. Y.
,
Li
,
L.
, and
Byrd
,
P. J.
,
2001
, “
The Influence of Temporal Pulse Train Modulation During Laser Percussion Drilling
,”
Opt. Lasers Eng.
,
35
(
3
), pp.
149
164
.10.1016/S0143-8166(01)00008-2
16.
Chan
,
C. L.
, and
Mazumder
,
J.
,
1987
, “
One-Dimensional Steady-State Model for Damage by Vaporization and Liquid Expulsion due to Laser-Material Interaction
,”
J. Appl. Phys.
,
62
(
11
), pp.
4579
4586
.10.1063/1.339053
17.
Zhao
,
X.
, and
Shin
,
Y. C.
,
2013
, “
Femtosecond Laser Ablation of Aluminum in Vacuum and Air at High Laser Intensity
,”
Appl. Surf. Sci.
,
283
(
10
), pp.
94
99
.10.1016/j.apsusc.2013.06.037
18.
Wallis
,
G. B.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York.
19.
Hewitt
,
G. F.
,
1982
, “
Liquid-Gas Systems
,”
Handbook of Multiphase Systems
,
G.
Hetsroni
, ed.,
Hemisphere Pub.
,
New York
, Chap. 2.
20.
Whalley
,
P. B.
,
1987
,
Boiling, Condensation, and Gas-Liquid Flow
,
Clarendon
,
Oxford
.
21.
Ishii
,
M.
,
1982
, “
Wave Phenomena and Two-Phase Flow Instabilities
,” Handbook of Multiphase Systems,
G.
Hetsroni
, ed.,
Hemisphere Pub.
,
New York
, Chap. 2.4.
22.
Taitel
,
Y.
,
Bornea
,
D.
, and
Dukler
,
A. E.
,
1980
, “
Modeling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes
,”
AIChE J.
,
26
(
3
), pp.
345
354
.10.1002/aic.690260304
23.
Petalas
,
N.
, and
Aziz
,
K.
,
2000
, “
A Mechanistic Model for Multiphase Flow in Pipes
,”
J. Can. Pet. Technol.
,
39
(
6
), pp.
43
55
.10.2118/00-06-04
24.
Lopes
,
J. C. B.
, and
Dukler
,
A. E.
,
1986
, “
Droplet Entrainment in Vertical Annular Flow and Its Contribution to Momentum Transfer
,”
AIChE J.
,
32
(
9
), pp.
1500
1515
.10.1002/aic.690320911
25.
Pastor
,
M.
,
Zhao
,
H.
, and
DebRoy
,
T.
,
2001
, “
Pore Formation During Continuous Wave Nd:YAG Laser Welding of Aluminum for Automotive Applications
,”
Weld. Int.
,
15
(
4
), pp.
275
281
.10.1080/09507110109549355
26.
Schauer
,
D. A.
, and
Giedt
,
W. H.
,
1978
, “
Prediction of Electron Beam Welding Spiking Tendency
,”
Weld. J.
,
57
(
7
), pp.
189s
195s
.
27.
Wei
,
P. S.
,
Chuang
,
K. C.
,
Ku
,
J. S.
, and
DebRoy
,
T.
,
2012
, “
Mechanisms of Spiking and Humping in Keyhole Welding
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
2
(
3
), pp.
383
394
.10.1109/TCPMT.2011.2178412
28.
Lee
,
J. Y.
,
Ko
,
S. H.
,
Farson
,
D. F.
, and
Yoo
,
C. D.
,
2002
, “
Mechanism of Keyhole Formation and Stability in Stationary Laser Welding
,”
J. Phys. D: Appl. Phys.
,
35
(
13
), pp.
1570
1576
.10.1088/0022-3727/35/13/320
29.
Zhou
,
J.
,
Tsai
,
H. L.
, and
Wang
,
P. C.
,
2006
, “
Transport Phenomena and Keyhole Dynamics During Pulsed Laser Welding
,”
ASME J. Heat Transfer
,
128
(
7
), pp.
680
690
.10.1115/1.2194043
30.
Amara
,
E. H.
, and
Fabbro
,
R.
,
2008
, “
Modeling of Gas Jet Effect on the Melt Pool Movements During Deep Penetration Laser Welding
,”
J. Phys. D: Appl. Phys.
,
41
(
5
), p.
055503
.10.1088/0022-3727/41/5/055503
31.
Zhao
,
H.
,
Niu
,
W.
,
Zhang
,
B.
,
Lei
,
Y.
,
Kodama
,
M.
, and
Ishide
,
T.
,
2011
, “
Modeling of Keyhole Dynamics and Porosity Formation Considering the Adaptive Keyhole Shape and Three-Phase Coupling During Deep-Penetration Laser Welding
,”
J. Phys. D: Appl. Phys.
,
44
(
48
), p.
485302
.10.1088/0022-3727/44/48/485302
32.
Pang
,
S.
,
Chen
,
L.
,
Zhou
,
J,
,
Yin
,
Y.
, and
Chen
,
T.
,
2011
, “
A Three-Dimensional Sharp Interface Model for Self-Consistent Keyhole and Weld Pool Dynamics in Deep Penetration Laser Welding
,”
J. Phys. D: Appl. Phys.
,
44
(
2
), p.
025301
.10.1088/0022-3727/44/2/025301
33.
Courtois
,
M.
,
Carin
,
M.
,
Le Masson
,
P.
,
Gaied
,
S.
, and
Balabane
,
M.
,
2013
, “
A New Approach to Compute Multi-Reflections of Laser Beam in a Keyhole for Heat Transfer and Fluid Flow Modelling in Laser Welding
,”
J. Phys. D: Appl. Phys.
,
46
(
50
), p.
505305
.10.1088/0022-3727/46/50/505305
34.
Zhang
,
Y.
,
Li
,
S. C.
,
Chen
,
G. Y.
, and
Mazumder
,
J.
,
2013
, “
Experimental Observation and Simulation of Keyhole Dynamics During Laser Drilling
,”
Opt. Laser Technol.
,
48
(6), pp.
405
414
.10.1016/j.optlastec.2012.10.039
35.
Li
,
S.
,
Chen
,
G.
,
Zhang
,
M.
,
Zhou
,
Y.
, and
Zhang
,
Y.
,
2014
, “
Dynamic Keyhole Profile During High-Power Deep-Penetration Laser Welding
,”
J. Mater. Process. Technol.
,
214
(
3
), pp.
565
570
.10.1016/j.jmatprotec.2013.10.019
36.
Low
,
D. K. Y.
, and
Li
,
L.
,
2001
, “
An Investigation Into Melt Flow Dynamics During Repetitive Pulsed Laser Drilling of Transparent Media
,”
Opt. Laser Technol.
,
33
(
7
), pp.
515
522
.10.1016/S0030-3992(01)00074-3
37.
Reznichenko
,
V. F.
, and
Verigin
,
A. M.
,
1986
, “
Parameters of the Vapor-Gas Phase in the Channel in Deep Penetration of Metals With an Electron Beam
,”
Svar. Proizvod.
,
33
(
6
), pp.
25
28
.
38.
Viskanta
,
R.
,
1988
, “
Heat Transfer During Melting and Solidification of Metals
,”
ASME J. Heat Transfer
,
110
(
4b
), pp.
1205
1219
.10.1115/1.3250621
39.
Poueyo-Verwaerde
,
A.
,
Fabbro
,
R.
,
Deshors
,
G.
,
de Frutos
,
A. M.
, and
Orza
,
J. M.
,
1993
, “
Experimental Study of Laser-Induced Plasma in Welding Conditions With Continuous CO2 Laser
,”
J. Appl. Phys.
,
74
(
9
), pp.
5773
5780
.10.1063/1.355284
40.
Collur
,
M. M.
, and
DebRoy
,
T.
,
1989
, “
Emission Spectroscopy of Plasma During Laser Welding of AISI 201 Stainless Steel
,”
Metall. Mater. Trans. B
,
20
(
2
), pp.
277
286
.10.1007/BF02825608
41.
Yilbas
,
B. S.
, and
Yilbs
,
Z.
,
2001
, “
Measurement of Laser Beam Transmittance Through Laser Produced Vapour Plume
,”
Opt. Quantum Electron.
,
33
(
6
), pp.
621
640
.10.1023/A:1010870128222
42.
Modest
,
M. F.
,
1993
,
Radiative Heat Transfer
,
McGraw-Hill
,
New York
.
43.
Zeng
,
X.
,
Mao
,
X.
,
Mao
,
S. S.
,
Yoo
,
J. H.
, and
Greif
,
R.
,
2004
, “
Laser-Plasma Interactions in Fused Silica Cavities
,”
J. Appl. Phys.
,
95
(
3
), pp.
816
822
.10.1063/1.1635990
44.
Wei
,
P. S.
, and
Ho
,
C. Y.
,
1998
, “
Beam Focusing Characteristics Effect on Energy Reflection and Absorption in a Drilling or Welding Cavity of Paraboloid of Revolution
,”
Int. J. Heat Mass Transfer
,
41
(
21
), pp.
3299
3308
.10.1016/S0017-9310(98)00036-2
45.
Ho
,
C. Y.
,
2004
, “
Effects of Polarizations of a Laser on Absorption in a Paraboloid of Revolution-Shaped Welding or Drilling Cavity
,”
J. Appl. Phys.
,
96
(
10
), pp.
5393
5401
.10.1063/1.1797543
46.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
, Vol.
2
,
Wiley
,
New York
.
47.
Amara
,
E. H.
,
Fabbro
,
R.
, and
Bendib
,
A.
,
2003
, “
Modeling of the Compressible Vapor Flow Induced in a Keyhole During Laser Welding
,”
J. Appl. Phys.
,
93
(
7
), pp.
4289
4296
.10.1063/1.1557778
You do not currently have access to this content.