Two-dimensional computational model has been developed for simulation of convection-assisted drug transport during intravitreal drug delivery for vitrectomized human eye. The convection current in vitreous humor was induced by laser heating. The model drug fluorescein was placed initially in different positions inside the vitreous. The transport of drug, taking the natural convection flow into account, was numerically solved using appropriate conservation equations. For a simulation period of 60 min, the convection-assisted diffusion increased the average drug mass fraction in the retinal target region by 5.7 times compared to the pure diffusion model, in case of central depot. Even for low diffusivity high molecular weight compounds, the convection in vitreous proved useful in enhancing the transport across vitreous. The study showed that inducing convection in vitreous could be potentially used for drug delivery in eye. Also laser heating could be explored as an option to enhance the delivery of drug to the posterior segment of the eye.

References

1.
Patel
,
P. B.
,
Shastri
,
D. H.
,
Shelat
,
P. K.
, and
Shukla
,
A. K.
,
2010
, “
Ophthalmic Drug Delivery System: Challenges and Approaches
,”
Syst. Rev. Pharm.
,
1
(
2
), pp.
113
120
.
2.
Marsh
,
D. A.
,
2011
,
Drug Product Development for the Back of the Eye
, Vol.
2
,
Springer
,
New York
.
3.
Amrite
,
A. C.
,
Edelhauser
,
H. F.
,
Singh
,
S. R.
, and
Kompella
,
U. B.
,
2008
, “
Effect of Circulation on the Disposition and Ocular Tissue Distribution of 20 nm Nanoparticles After Periocular Administration
,”
Mol. Vision
,
14
, pp.
150
160
.
4.
Gaudana
,
R.
,
Ananthula
,
H. K.
,
Parenky
,
A.
, and
Mitra
,
A. K.
,
2010
, “
Ocular Drug Delivery
,”
AAPS J.
,
12
(
3
), pp.
348
360
.
5.
Pascolini
,
D.
, and
Mariotti
,
S. P.
,
2012
, “
Global Estimates of Visual Impairment: 2010
,”
Br. J. Ophthalmol.
,
96
(
5
), pp.
614
618
.
6.
Thrimawithana
,
T. R.
,
Young
,
S.
,
Bunt
,
C. R.
,
Green
,
C.
, and
Alany
,
R. G.
,
2011
, “
Drug Delivery to the Posterior Segment of the Eye
,”
Drug Discovery Today
,
16
(
5–6
), pp.
270
277
.
7.
Hughes
,
P. M.
,
Olejnik
,
O.
,
Chang-Lin
,
J.-E.
, and
Wilson
,
C. G.
,
2005
, “
Topical and Systemic Drug Delivery to the Posterior Segments
,”
Adv. Drug Delivery Rev.
,
57
(
14
), pp.
2010
2032
.
8.
Bleeker
,
G.
,
van Haeringen
,
N.
,
Maas
,
E.
, and
Glasius
,
E.
,
1968
, “
Selective Properties of the Vitreous Barrier
,”
Exp. Eye Res.
,
7
(
1
), pp.
37
46
.
9.
Ahmadieh
,
H.
, and
Vafi
,
N.
,
2007
, “
Dramatic Response of Choroidal Neovascularization Associated With Choroidal Osteoma to the Intravitreal Injection of Bevacizumab (Avastin)
,”
Graefe's Arch. Clin. Exp. Ophthalmol.
,
245
(
11
), pp.
1731
1733
.
10.
Geroski
,
D. H.
, and
Edelhauser
,
H. F.
,
2000
, “
Drug Delivery for Posterior Segment Eye Disease
,”
Invest. Ophthalmol. Visual Sci.
,
41
(
5
), pp.
961
964
.
11.
Friedrich
,
S.
,
Cheng
,
Y.-L.
, and
Saville
,
B.
,
1997
, “
Drug Distribution in the Vitreous Humor of the Human Eye: The Effects of Intravitreal Injection Position and Volume
,”
Curr. Eye Res.
,
16
(
7
), pp.
663
669
.
12.
Friedrich
,
S.
,
Cheng
,
Y.-L.
, and
Saville
,
B.
,
1997
, “
Finite Element Modeling of Drug Distribution in the Vitreous Humor of the Rabbit Eye
,”
Ann. Biomed. Eng.
,
25
(
2
), pp.
303
314
.
13.
Kathawate
,
J.
, and
Acharya
,
S.
,
2008
, “
Computational Modeling of Intravitreal Drug Delivery in the Vitreous Chamber With Different Vitreous Substitutes
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5598
5609
.
14.
Missel
,
P. J.
,
2012
, “
Simulating Intravitreal Injections in Anatomically Accurate Models for Rabbit, Monkey, and Human Eyes
,”
Pharm. Res.
,
29
(
12
), pp.
3251
3272
.
15.
Repetto
,
R.
,
Siggers
,
J. H.
, and
Stocchino
,
A.
,
2010
, “
Mathematical Model of Flow in the Vitreous Humor Induced by Saccadic Eye Rotations: Effect of Geometry
,”
Biomech. Model. Mechanobiol.
,
9
(
1
), pp.
65
76
.
16.
Abouali
,
O.
,
Modareszadeh
,
A.
,
Ghaffariyeh
,
A.
, and
Tu
,
J.
,
2012
, “
Numerical Simulation of the Fluid Dynamics in Vitreous Cavity due to Saccadic Eye Movement
,”
Med. Eng. Phys.
,
34
(
6
), pp.
681
692
.
17.
Xu
,
J.
,
Heys
,
J. J.
,
Barocas
,
V. H.
, and
Randolph
,
T. W.
,
2000
, “
Permeability and Diffusion in Vitreous Humor: Implications for Drug Delivery
,”
Pharm. Res.
,
17
(
6
), pp.
664
669
.
18.
Balachandran
,
R. K.
, and
Barocas
,
V. H.
,
2011
, “
Contribution of Saccadic Motion to Intravitreal Drug Transport: Theoretical Analysis
,”
Pharm. Res.
,
28
(
5
), pp.
1049
1064
.
19.
Modareszadeh
,
A.
,
Abouali
,
O.
,
Ghaffarieh
,
A.
, and
Ahmadi
,
G.
,
2013
, “
Saccade Movements Effect on the Intravitreal Drug Delivery in Vitreous Substitutes: A Numerical Study
,”
Biomech. Model. Mechanobiol.
,
12
(
2
), pp.
281
290
.
20.
Bonfiglio
,
A.
,
Repetto
,
R.
,
Siggers
,
J. H.
, and
Stocchino
,
A.
,
2013
, “
Investigation of the Motion of a Viscous Fluid in the Vitreous Cavity Induced by Eye Rotations and Implications for Drug Delivery
,”
Phys. Med. Biol.
,
58
(
6
), pp.
1969
1982
.
21.
Narasimhan
,
A.
,
Jha
,
K. K.
, and
Gopal
,
L.
,
2010
, “
Transient Simulations of Heat Transfer in Human Eye Undergoing Laser Surgery
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
482
490
.
22.
Araie
,
M.
, and
Maurice
,
D.
,
1991
, “
The Loss of Fluorescein, Fluorescein Glucuronide and Fluorescein Isothiocyanate Dextran From the Vitreous by the Anterior and Retinal Pathways
,”
Exp. Eye Res.
,
52
(
1
), pp.
27
39
.
23.
Kandulla
,
J.
,
Elsner
,
H.
,
Birngruber
,
R.
, and
Brinkmann
,
R.
,
2006
, “
Noninvasive Optoacoustic Online Retinal Temperature Determination During Continuous-Wave Laser Irradiation
,”
J. Biomed. Opt.
,
11
(
4
), p.
041111
.
24.
Scott
,
J. A.
,
1988
, “
A Finite Element Model of Heat Transport in the Human Eye
,”
Phys. Med. Biol.
,
33
(
2
), pp.
227
241
.
25.
Park
,
J.
,
Bungay
,
P.
,
Lutz
,
R.
,
Augsburger
,
J.
,
Millard
,
R.
,
Sinha Roy
,
A.
, and
Banerjee
,
R.
,
2005
, “
Evaluation of Coupled Convective–Diffusive Transport of Drugs Administered by Intravitreal Injection and Controlled Release Implant
,”
J. Controlled Release
,
105
(
3
), pp.
279
295
.
26.
Missel
,
P. J.
,
2002
, “
Hydraulic Flow and Vascular Clearance Influences on Intravitreal Drug Delivery
,”
Pharm. Res.
,
19
(
11
), pp.
1636
1647
.
27.
Balachandran
,
R. K.
, and
Barocas
,
V. H.
,
2008
, “
Computer Modeling of Drug Delivery to the Posterior Eye: Effect of Active Transport and Loss to Choroidal Blood Flow
,”
Pharm. Res.
,
25
(
11
), pp.
2685
2696
.
28.
Narasimhan
,
A.
, and
Sundarraj
,
C.
,
2013
, “
Effect of Choroidal Blood Perfusion and Natural Convection in Vitreous Humor During Transpupillary Thermotherapy (TTT)
,”
Int. J. Numer. Methods Biomed. Eng.
,
29
(
4
), pp.
530
541
.
You do not currently have access to this content.