The paper presents a new approximate method of solving non-Fourier heat conduction problems. The approach described here is suitable for solving both direct and inverse problems. The way of generating Trefftz functions for non-Fourier heat conduction equation has been shown. Obtained functions have been used for solving direct and boundary inverse problems (identification of boundary condition). As a rule, inverse problems are ill-posed. Therefore, each method of solving these problems has to be checked according to disturbance of the input data. Presented examples confirm high usability of the presented approach for solving direct and inverse non-Fourier heat conduction problems.

References

1.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Oxford University
,
Oxford
, UK.
2.
Mills
,
A. F.
,
1999
,
Basic Heat and Mass Transfer
,
Prentice-Hall
, Upper Saddle River, NJ.
3.
Cattaneo
,
C.
,
1948
, “
Sulla conduzione de calore
,”
Atti Semin. Mat. Fis. Univ. Modena
,
3
, pp.
83
101
.
4.
Cattaneo
,
C.
,
1958
, “
Sur une forme de l'equation de la chaleur elinant le paradoxes d'une propagation instantance
,”
C. R. Acad. Sci.
,
247
, pp.
431
432
.10.1007/978-3-642-11051-1_5
5.
Vernotte
,
P.
,
1958
, “
La véritable équation de la chaleur
,”
C. R. Acad. Sci.
,
247
, pp.
2103
2105
.
6.
Ozisik
,
M. N.
, and
Tzou
,
D. Y.
,
1994
, “
On the Wave Theory in Heat Conduction
,”
ASME J. Heat Transfer
,
116
(
3
), pp.
526
535
.10.1115/1.2910903
7.
Weymann
,
H. D.
,
1967
, “
Finite Speed of Propagation in Heat Conduction, Diffusion and Viscous Shear Motion
,”
Am. J. Phys.
,
35
(
6
), pp.
488
496
.10.1119/1.1974155
8.
Ma
,
Y. U.
, and
Chen
,
Y. Q.
,
1994
,
Solid-State Lasers
,
Zhejiang University
,
Hangzhou
, China, Chap. 6 (in Chinese).
9.
Tao
,
Y. J.
,
Huai
,
X. L.
, and
Li
,
Z. G.
,
2006
, “
Numerical Simulation of the Non-Fourier Heat Conduction in a Solid-State Laser Medium
,”
Chin. Phys. Lett.
,
23
(
9
), pp.
2487
2490
.10.1088/0256-307X/23/9/038
10.
Chandrasekharaiah
,
D. S.
,
1986
, “
Thermoelasticity With Second Sound: A Review
,”
ASME Appl. Mech. Rev.
,
39
(3), pp.
355
377
.10.1115/1.3143705
11.
Kaminski
,
W.
,
1990
, “
Hyperbolic Heat Conduction Equation for Materials With a Nonhomogenous Inner Structure
,”
ASME J. Heat Transfer
,
112
(3), pp.
555
560
.10.1115/1.2910422
12.
Mitra
,
K.
,
Kumar
,
S.
,
Vedavarz
,
A.
, and
Moallemi
,
M. K.
,
1995
, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer
,
117
(3), pp.
569
573
.10.1115/1.2822615
13.
Zhang
,
Z.
, and
Liu
,
D. Y.
,
1998
, “
Non-Fourier Effects in Rapid Transient Conduction in a Spherical Medium
,”
J. Eng. Thermophys.
,
19
(
5
), pp.
601
605
.
14.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales
,”
ASME J. Heat Transfer
,
117
(1), pp.
8
16
.10.1115/1.2822329
15.
Fan
,
Q. M.
, and
Lu
,
W. Q.
,
2002
, “
A New Numerical Method to Simulate the Non-Fourier Heat Conduction in a Single-Phase Medium
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2815
2821
.10.1016/S0017-9310(01)00364-7
16.
Tzou
,
D. Y.
,
1996
,
Macro-to Micro-Scale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
Washington DC
.
17.
Chou
,
Y.
, and
Yang
,
R. J.
,
2008
, “
Application of CESE Method to Simulate Non-Fourier Heat Conduction in Finite Medium With Pulse Surface Heating
,”
Int. J. Heat Mass Transfer
,
51
(13–14), pp.
3525
3534
.10.1016/j.ijheatmasstransfer.2007.10.025
18.
Bertman
,
B.
, and
Sandiford
,
D. J.
,
1970
, “
Second Sound in Solid Helium
,”
Sci. Am.
,
222
, pp.
92
101
.10.1038/scientificamerican0570-92
19.
Qiu
,
T. Q.
,
Juhacz
,
T.
,
Suarez
,
C.
,
Born
,
W. E.
, and
Tien
,
C. L.
,
1994
, “
Femtosecond Laser Heating of Experiment Multi-Layered Metals–II. Experiment
,”
Int. J. Heat Mass Transfer
,
37
(17), pp.
2799
2808
.10.1016/0017-9310(94)90397-2
20.
Al-Nimr
,
M. A.
, and
Hader
,
M. A.
,
2001
, “
Melting and Solidification Under the Effect of the Phase-Lag Concept in the Hyperbolic Conduction Equation
,”
Heat Transfer Eng.
,
22
(
2
), pp.
40
47
.10.1080/014576301462245
21.
Chen
,
J. K.
, and
Beraun
,
J. E.
,
2001
, “
Numerical Study of Ultrashort Laser Pulse Interactions With Metal Films
,”
Numer. Heat Transfer, Part A
,
40
(
1
), pp.
1
20
.10.1080/104077801300348842
22.
Tzou
,
D. Y.
,
2002
, “
Ultrafast Laser Heating on Metal Films Effects of Microvoids
,”
J. Thermophys. Heat Transfer
,
16
(
1
), pp.
30
35
.10.2514/2.6670
23.
Tzou
,
D. Y.
, and
Chiu
,
K. S.
,
2001
, “
Temperature-Dependent Thermal Lagging in Ultrafast Laser Heating
,”
Int. J. Heat Mass Transfer
,
44
(9), pp.
1725
1734
.10.1016/S0017-9310(00)00215-5
24.
Tsai
,
C. S.
, and
Hung
,
C. I.
,
2003
, “
Thermal Wave Propagation in a Bi-Layered Composite Sphere due to a Sudden Temperature Change on the Outer Surface
,”
Int. J. Heat Mass Transfer
,
46
(26), pp.
5137
5144
.10.1016/S0017-9310(03)00369-7
25.
Tang
,
D. W.
, and
Araki
,
N.
,
1996
, “
Non-Fourier Heat Conduction in a Finite Medium Under Periodic Surface Thermal Disturbance
,”
Int. J. Heat Mass Transfer
,
39
(8), pp.
1585
1590
.10.1016/0017-9310(95)00261-8
26.
Barletta
,
A.
, and
Zanchini
,
E.
,
1999
, “
Three-Dimensional Propagation of Hyperbolic Thermal Waves in a Solid Bar With Rectangular Cross-Section
,”
Int. J. Heat Mass Transfer
,
42
(2), pp.
219
229
.10.1016/S0017-9310(98)00190-2
27.
Zhang
,
D. M.
,
Li
,
L.
,
Zhihua
,
L.
,
Li
,
G.
, and
Xinyu
,
T.
,
2005
, “
Non-Fourier Conduction Model With Thermal Source Term of Ultra Short High Power Pulsed Laser Ablation and Temperature Evolvement Before Melting
,”
Physica B
,
364
(1–4), pp.
285
293
.10.1016/j.physb.2005.04.025
28.
Lewandowska
,
M.
, and
Malinowski
,
L.
,
2006
, “
An Analytical Solution of the Hyperbolic Heat Conduction Equation for the Case of a Finite Medium Symmetrically Heated on Both Sides
,”
Int. Commun. Heat Mass Transfer
,
33
(1), pp.
61
69
.10.1016/j.icheatmasstransfer.2005.08.004
29.
Moosaie
,
A.
,
2007
, “
Non-Fourier Heat Conduction in a Finite Medium With Arbitrary Source Term and Initial Conditions
,”
Forsch. Ingenieurwes.
,
71
(3–4), pp.
163
169
.10.1007/s10010-007-0054-8
30.
Moosaie
,
A.
,
2008
, “
Non-Fourier Heat Conduction in a Finite Medium With Insulated Boundaries and Arbitrary Initial Conditions
,”
Int. Commun. Heat Mass Transfer
,
35
(1), pp.
103
111
.10.1016/j.icheatmasstransfer.2007.08.001
31.
Saleh
,
A.
, and
Al-Nimr
,
M.
,
2008
, “
Variational Formulation of Hyperbolic Heat Conduction Problems Applying Laplace Transform Technique
,”
Int. Commun. Heat Mass Transfer
,
35
(2), pp.
204
214
.10.1016/j.icheatmasstransfer.2007.06.010
32.
Chen
,
H. T.
, and
Lin
,
J. Y.
,
1992
, “
Numerical Analysis for Hyperbolic Heat Conduction
,”
Int. J. Heat Mass Transfer
,
36
, pp.
2891
2898
.10.1016/0017-9310(93)90108-I
33.
Liu
,
K. C.
,
2006
, “
Numerical Simulation for Non-Linear Thermal Wave
,”
Appl. Math. Comput.
,
175
(
2
), pp.
1385
1399
.10.1016/j.amc.2005.08.033
34.
Chen
,
T. M.
,
2007
, “
Numerical Solution of Hyperbolic Heat Conduction in Thin Surface Layers
,”
Int. J. Heat Mass Transfer
,
50
(21–22), pp.
4424
4429
.10.1016/j.ijheatmasstransfer.2006.10.027
35.
Zhou
,
J. H.
,
Zhang
,
Y. W.
, and
Chen
,
J. K.
,
2008
, “
Non-Fourier Heat Conduction Effect on Laser-Induced Thermal Damage in Biological Tissues
,”
Numer. Heat Transfer, Part A
,
54
(1), pp.
1
19
.10.1080/10407780802025911
36.
Yang
,
C.-Y.
,
2009
, “
Direct and Inverse Solutions of the Two-Dimensional Hyperbolic Heat Conduction Problems
,”
Appl. Math. Modell.
,
33
(6), pp.
2907
2918
.10.1016/j.apm.2008.10.001
37.
Ciałkowski
,
M. J.
, and
Frąckowiak
,
A.
,
2000
,
Heat Functions and Their Application for Solving Heat Transfer and Mechanical Problems
,
Poznań University of Technology Publishers
,
Poznań
, Poland (in Polish).
38.
Grysa
,
K.
,
2010
,
Trefftz Functions and Their Applications in Solving the Inverse Problems
,
Kielce University of Technology Publishers
,
Kielce
, Poland (in Polish).
39.
Kołodziej
,
J.
, and
Zieliński
,
A. P.
,
2009
,
Boundary Collocation Techniques and Their Application in Engineering
,
WIT Press
,
Southampton
, UK.
40.
Li
,
Z.-C.
,
Lu
,
T.-T.
,
Hu
,
H.-Y.
, and
Cheng
,
A. H.-D.
,
2008
,
The Trefftz and Collocation Methods
,
WIT Press
,
Southampton
, UK.
41.
Maciag
,
A.
,
2009
,
Trefftz Functions for Some Direct and Inverse Problems of Mechanics
,
Kielce University of Technology Publishers
,
Kielce
, Poland (in Polish).
42.
Qin
,
Q.-H.
,
2000
,
The Trefftz Finite and Boundary Element Method
,
WIT Press
,
Southampton, Boston, MA
.
43.
Ciałkowski
,
M. J.
, and
Frąckowiak
,
A.
,
2003
, “
Thermal and Related Functions Used in Solving Certain Problems of Mechanics, Part I. Solving Some Differential Equations With the Use of Inverse Operator
,” Modern Problems of Technics, Studies and Materials—Technics 3, J. Mielniczuk and B. Pietrulewicz, eds., Univ. of Zielona Góra Publishers, pp.
7
70
.
44.
Hsu
,
P. T.
, and
Chu
,
Y. H.
,
2004
, “
An Inverse Non-Fourier Heat Conduction Problem Approach for Estimating the Boundary Condition in Electronic Device
,”
Appl. Math. Modell.
,
28
(7), pp.
639
652
.10.1016/j.apm.2003.10.010
45.
Li
,
J.
,
Cheng
,
P.
,
Peterson
,
G. P.
, and
Xu
,
J. Z.
,
2005
, “
Rapid Transient Heat Conduction in Multilayer Materials With Pulsed Heating Boundary
,”
Numer. Heat Transfer, Part A
,
47
(7), pp.
633
652
.10.1080/10407780590911666
46.
Kobasko
,
N. I.
, and
Guseynov
,
S. H. E.
,
2012
, “
An Explanation of the Nature of Thermal Waves a Poker Effect on the Basis of Hyperbolic Heat Conductivity Equation Analysis and Existence of Free Electrons in Metals
,”
Proceedings of the Recent Researches in Circuits and Systems CSCC ’12
,
V. E.
Balas
, and
M.
Koksal
, eds., Kos Island, Greece, July 14–17, pp.
167
172
.
47.
Liu
,
K. C.
,
Cheng
,
P. J.
, and
Wang
,
Y. N.
,
2011
, “
Analysis of Non-Fourier Thermal Behavior for Multi-Layer Skin Model
,”
Therm. Sci.
,
15
(
suppl. 1
), pp.
61
67
.10.2298/TSCI11S1061L
48.
Xu
,
F.
,
Seffen
,
K. A.
, and
Lu
,
T. J.
,
2008
, “
Non-Fourier Analysis of Skin Biothermomechanics
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2237
2259
.10.1016/j.ijheatmasstransfer.2007.10.024
49.
Taitel
,
Y.
,
1972
, “
On the Parabolic, Hyperbolic and Discrete Formulation of the Heat Conduction Equation
,”
Int. J. Heat Mass Transfer
,
15
(2), pp.
369
371
.10.1016/0017-9310(72)90085-3
50.
Ghazizadeh
,
H. R.
, and
Maerefat
,
M.
,
2010
, “
Modeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model
,”
Iran. J. Mech. Eng. I
,
11
(
2
), pp.
66
80
.
51.
Grysa
,
K.
, and
Jankowski
,
J.
,
1978
, “
Summation of Certain Dini and Trigonometric Series Occurring in Problems of the Theory of Continuous Media
,”
J. Theor. Appl. Mech.
,
16
(
3
), pp.
299
319
(in Polish).
52.
Tikhonov
,
A. N.
, and
Arsenin
,
V. Y.
,
1977
,
Solution of Ill-Posed Problems
,
Wiley & Sons
,
Washington, DC
.
53.
Özisik
,
M. N.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor & Francis
, New York.
54.
Grysa
,
K.
, and
Leśniewska
,
R.
,
2010
, “
Different Finite Element Approaches for Inverse Heat Conduction Problems
,”
Inverse Prob. Sci. Eng.
,
18
(
1
), pp.
3
17
.10.1080/17415970903233556
55.
Maciag
,
A.
,
2011
, “
The Usage of Wave Polynomials in Solving Direct and Inverse Problems for Two-Dimensional Wave Equation
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
7
), pp.
1107
1125
.10.1002/cnm.1338
56.
Ciałkowski
,
M. J.
,
Frąckowiak
,
A.
, and
Grysa
,
K.
,
2007
, “
Physical Regularization for Inverse Problems of Stationary Heat Conduction
,”
J. Inv. Ill-Posed Problems
,
15
(
4
), pp.
347
364
.10.1515/jiip.2007.019
57.
Grysa
,
K.
,
Leśniewska
,
R.
, and
Maciag
,
A.
,
2008
, “
Energetic Approach to Direct and Inverse Heat Conduction Problems With Trefftz Functions Used in FEM
,”
Comput. Assisted Mech. Eng. Sci.
,
15
, pp.
171
182
.
You do not currently have access to this content.