In this technical brief, the effect of adding silver (Ag) nanoparticles of various shapes on the thermal conductivity enhancement of ethylene glycol (EG)-based suspensions was investigated experimentally. These included Ag nanospheres (Ag NSs), Ag nanowires (Ag NWs), and Ag nanoflakes (Ag NFs). Measurements of the thermal conductivity of the suspensions were performed from 10 to 30 °C at an increment of 5 °C. It was shown that the thermal conductivity of the EG-based suspensions increases with raising the temperature. The Ag NWs of a high aspect ratio (∼500) caused greatest relative enhancement up to 15.6% at the highest loading of nearly 0.1 vol. %, whereas the other two shapes of nanoparticles, Ag NSs and Ag NFs with much smaller aspect ratios, only led to enhancements up to 5%. The formation of a network of Ag NWs that facilitates heat conduction was likely responsible for their better performance. The relative enhancement was also predicted by the Hamilton-Crosser model that takes the particle shape effect into consideration. It was shown that the predictions far underestimate the thermal conductivity enhancements but are qualitatively consistent with their shape dependence. As a penalty, however, the presence of Ag NWs was shown to give rise to significant increase in the viscosity of the EG-based suspensions.

References

1.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2009
, “
The Cheng-Minkowycz Problem for Natural Convective Boundary-Layer Flow in a Porous Medium Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5792
5795
.10.1016/j.ijheatmasstransfer.2009.07.024
2.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Therm. Sci.
,
49
(
2
),
243
247
.10.1016/j.ijthermalsci.2009.07.015
3.
Das
,
S. K.
,
Putra
,
N.
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.10.1115/1.1571080
4.
Vadasz
,
P.
,
2005
, “
Heat Conduction in Nanofluid Suspensions
,”
ASME J. Heat Transfer
,
128
(
5
), pp.
465
477
.10.1115/1.2175149
5.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2006
, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
,
129
(
5
), pp.
617
623
.10.1115/1.2712475
6.
Kim
,
S. H.
,
Choi
,
S. R.
, and
Kim
,
D.
,
2006
, “
Thermal Conductivity of Metal-Oxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation
,”
ASME J. Heat Transfer
,
129
(
3
), pp.
298
307
.10.1115/1.2427071
7.
Yu
,
W. H.
,
France
,
D. M.
,
Routbort
,
J. L.
, and
Choi
,
S. U. S.
,
2008
, “
Review and Comparisons of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,”
Heat Transfer Eng.
,
29
(
5
), pp.
432
460
.10.1080/01457630701850851
8.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Paola
,
R. D.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundrarajan
,
T.
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Vaerenbergh
,
S. V.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.-H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.10.1063/1.3245330
9.
Fan
,
J.
, and
Wang
,
L.
,
2009
, “
Review of Heat Conduction in Nanofluids
,”
ASME J. Heat Transfer
,
133
(
4
), p.
040801
.10.1115/1.4002633
10.
Özerinç
,
S.
,
Kakaç
,
S.
, and
Yazıcıoğlu
,
A. G.
,
2010
, “
Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review
,”
Microfluid. Nanofluid.
,
8
(
2
), pp.
145
170
.10.1007/s10404-009-0524-4
11.
Kleinstreuer
,
C.
, and
Feng
,
Y.
,
2011
, “
Experimental and Theoretical Studies of Nanofluid Thermal Conductivity Enhancement: A Review
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
229
.10.1186/1556-276X-6-229
12.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
, and
Liu
,
Y.
,
2002
, “
Thermal Conductivity of Suspensioins Containing Nanosized SiC Particles
,”
Int. J. Thermophys.
,
23
(
2
), pp.
571
580
.10.1023/A:1015121805842
13.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2005
, “
Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids
,”
Int. J. Therm. Sci.
,
44
(
4
), pp.
267
373
.10.1016/j.ijthermalsci.2004.12.005
14.
Timofeeva
,
E. V.
,
Routbort
,
J. L.
, and
Singh
,
D.
,
2009
, “
Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids
,”
J. Appl. Phys.
,
106
(
1
), p.
014304
.10.1063/1.3155999
15.
Yu
,
Z.-T.
,
Fang
,
X.
,
Fan
,
L.-W.
,
Wang
,
X.
,
Xiao
,
Y.-Q.
,
Zeng
,
Yi
,
Xu
,
X.
,
Hu
,
Y.-C.
, and
Cen
,
K.-F.
,
2013
, “
Increased Thermal Conductivity of Liquid Paraffin-Based Suspensions in the Presence of Carbon Nano-Additives of Various Sizes and Shapes
,”
Carbon
,
53
, pp.
277
285
.10.1016/j.carbon.2012.10.059
16.
Liang
,
Q.
,
Yao
,
X.
,
Wang
,
W.
,
Liu
Y.
, and
Wong
,
C. P.
,
2011
, “
A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials
,”
ACS Nano
,
5
(
3
), pp.
2392
2401
.10.1021/nn200181e
17.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararagan
,
T.
,
Nair
,
A. S.
,
George
,
B.
and
Pradeep
,
T.
,
2003
, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
,
83
(
14
), pp.
2931
2933
.10.1063/1.1602578
18.
Cho
,
T.
Baek
,
I.
,
Lee
,
J.
, and
Park
,
S.
,
2005
, “
Preparation of Nanofluids Containing Suspended Silver Particles for Enhancing Fluid Thermal Conductivity of Fluids
,”
J. Ind. Eng. Chem.
,
11
(
5
), pp.
400
406
. Available at: http://www.cheric.org/PDF/JIEC/IE11/IE11-3-0400.pdf
19.
Kang
,
H. U.
,
Kim
,
S. H.
, and
Oh
,
J. M.
,
2006
, “
Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume
,”
Exp. Heat Transfer
,
19
(
3
), pp.
181
191
.10.1080/08916150600619281
20.
Lo
,
C.-H.
,
Tsung
,
T.-T.
, and
Lin
,
H.-M.
,
2007
, “
Preparation of Silver Nanofluid by the Submerged Arc Nanoparticle Synthesis System (SANSS)
,”
J. Alloys. Compd.
,
434–435
, pp.
659
662
.10.1016/j.jallcom.2006.08.217
21.
Lin
,
Y.-H.
,
Kang
,
S.-W.
, and
Chen
,
H.-L.
,
2008
, “
Effect of Silver Nano-Fluid on Pulsating Heat Pipe Thermal Performance
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1312
1317
.10.1016/j.applthermaleng.2007.10.019
22.
Li
,
D.
,
Hong
,
B.
,
Fang
,
W.
,
Guo
,
Y.
, and
Lin
,
R.
,
2010
, “
Preparation of Well-Dispersed Silver Nanoparticles for Oil-Based Nanofluids
,”
Ind. Eng. Chem. Res.
,
49
(
4
), pp.
1697
1702
.10.1021/ie901173h
23.
Godson
,
L.
,
Raja
,
B.
,
Mohanlal
,
D.
, and
Wongwises
,
S.
,
2010
, “
Experimental Investigation on the Thermal Conductivity and Viscosity of Silver-Deionized Water Nanofluid
,”
Exp. Heat Transfer
,
23
(
4
), pp.
317
332
.10.1080/08916150903564796
24.
Sharma
,
P.
,
Baek
,
I.-H.
,
Cho
,
T.
,
Park
,
S.
and
Lee.
,
K. B.
,
2011
, “
Enhancement of Thermal Conductivity of Ethylene Glycol Based Silver Nanofluids
,”
Powder Tech.
,
208
(
1
), pp.
7
19
.10.1016/j.powtec.2010.11.016
25.
Warrier
,
P.
, and
Teja
,
A.
,
2011
, “
Effect of Particle Size on the Thermal Conductivity of Nanofluids Containing Metallic Nanoparticles
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
247
.10.1186/1556-276X-6-247
26.
Li
,
D.
, and
Fang
,
W.
,
2012
, “
Preparation and Stability of Silver/Kerosene Nanofluids
,”
Nanoscale Res. Lett.
,
7
(
1
), p.
362
.10.1186/1556-276X-7-362
27.
Clary
,
D. R.
,
Nabil
,
M.
,
Sedeh
,
M. M.
,
El-Hasadi
,
Y.
, and
Mills
,
G.
,
2012
, “
Photochemical Generation of Ag, Pd, and Pt Particles in Octane
,”
J. Phys. Chem. C
,
116
(
16
), pp.
9243
9250
.10.1021/jp210051j
28.
Singh
,
A. K.
, and
Raykar
,
V. S.
,
2013
, “
Effective Thermal Conductivity of Silver Nanofluids: Effect of Surface Plasmon Resonance
,”
Mater. Res. Innovations
,
17
(
2
), pp.
80
83
.10.1179/1433075X12Y.0000000027
29.
Paul
,
G.
,
Sarkar
,
S.
,
Pal
,
T.
,
Das
,
P. K.
, and
Manna
,
I.
,
2012
, “
Concentration and Size Dependence of Nano-Silver Dispersed Water Based Nanofluids
,”
J. Colloid. Interface Sci.
,
371
(
1
), pp.
20
27
.10.1016/j.jcis.2011.11.057
30.
Xia
,
X.
,
Zeng
,
J.
,
Zhang
,
Q.
,
Moran
,
C. H.
, and
Xia
,
Y.
,
2012
, “
Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals
,”
J. Phys. Chem. C
,
116
(
41
), pp.
21647
21656
.10.1021/jp306063p
31.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2005
, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
,
128
(
6
), pp.
588
–595.10.1115/1.2188509
32.
Shukla
,
R. K.
, and
Dhir
,
V. K.
,
2008
, “
Effect of Brownian Motion on Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042406
.10.1115/1.2818768
33.
Han
,
K.
,
Lee
,
W.-H.
,
Kleinstreuer
,
C.
, and
Koo
,
J.
,
2013
, “
Critical Invalidation of Temperature Dependence of Nanofluid Thermal Conductivity Enhancement
,”
ASME J. Heat Transfer
,
135
(
5
), p.
051601
.10.1115/1.4023544
34.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
35.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Res.
,
1
(
3
), pp.
187
191
.
36.
Zhang
,
R.
,
Lin
,
W.
,
Moon
,
K.-S.
,
Liang
,
Q.
, and
Wong
,
C. P.
,
2011
, “
Highly Reliable Copper-Based Conductive Adhesive Using an Amine Curing Agent for in Situ Oxidation/Corrosion Prevention
,”
IEEE Compon. Packag. Manuf. Technol.
,
1
(
1
), pp.
25
32
.10.1109/TCPMT.2010.2101870
37.
Venerus
,
D. C.
,
Buongiorno
,
J.
,
Christianson
,
R.
,
Townsend
,
J.
,
Bang
,
I. C.
,
Chen
,
G.
,
Chung
,
S. J.
,
Chyu
,
M.
,
Chen
,
H.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Hong
,
H.
,
Horton
,
M.
,
Hu
,
L.-W.
,
Iorio
,
C. S.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Kabelac
,
S.
,
Kedzierski
,
M. A.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
McKrell
,
T.
,
Ni
,
R.
,
Philip
,
J.
,
Prabhat
,
N.
,
Song
,
P.
,
Vaerenbergh
,
S. V.
,
Wen
,
D.
,
Witharana
,
S.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
,
2010
, “
Viscosity Measurements on Colloidal Dispersions (Nanofluids) for Heat Transfer Applications
,”
Appl. Rheol.
,
20
(
4
), p.
44582
.10.3933/ApplRheol-20-44582
You do not currently have access to this content.