The complex structures in the film cooling flow field of gas turbines lead to the anisotropic property of the turbulent eddy viscosity and scalar diffusivity. An algebraic anisotropic turbulence model is developed aiming at a more accurate modeling of the Reynolds stress and turbulent scalar flux. In this study, the algebraic anisotropic model is validated by a series of in-house experiments for cylindrical film cooling with compound angle injection of 0, 45, and 90 deg. Adiabatic film cooling effectiveness and flow field are measured using pressure sensitive paint and particle image velocimetry techniques on film cooling test rig in Tsinghua University. Detailed analyses of computational simulations are performed. The algebraic anisotropic model gives a good prediction of the secondary vortices associated with the jet and the trajectory of the jet, therefore improves the prediction of the scalar field. On one hand, the anisotropic eddy viscosity improves the modeling of Reynolds stress and the predictive flow field. On the other hand, the anisotropic turbulent scalar-flux model includes the role of anisotropic eddy viscosity in modeling of scalar flux and directly improves the turbulent scalar flux prediction.

References

1.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
IGTI Turbo Expo
, Orlando, FL, Paper 97-GT-45.
2.
Peterson
,
S. D.
, and
Plesniak
,
M. W.
,
2004
, “
Evolution of Jets Emanating From Short Holes into Crossflow
,”
J. Fluid Mech.
,
503
, pp.
57
91
.10.1017/S0022112003007407
3.
Jessen
,
W.
,
Schröder
,
W.
, and
Klaas
,
M.
,
2007
, “
Evolution of Jets Effusing From Inclined Holes into Crossflow
,”
Int. J. Heat Fluid Flow
,
28
, pp.
1312
1326
.10.1016/j.ijheatfluidflow.2007.06.010
4.
Aga
,
V.
,
Rose
,
M.
, and
Abhari
,
R. S.
,
2008
, “
Experimental Flow Structure Investigation of Compound Angled Film Cooling
,”
ASME J. Turbomach.
,
130
, p.
031005
.10.1115/1.2775491
5.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Freestream Turbulence Intensity on Film Cooling Jet Structure and Surface Effectiveness Using PIV and PSP
,”
ASME J. Turbomach.
,
133
, p.
041023
.10.1115/1.4003051
6.
McLachlan
,
B. G.
, and
Bell
,
J. H.
,
1995
, “
Pressure-Sensitive Paint in Aerodynamic Testing
,”
Exp. Therm. Fluid Sci.
,
10
(
4
), pp.
470
485
.10.1016/0894-1777(94)00123-P
7.
Zhang
,
L.
, and
Fox
,
M.
,
1999
. “
Flat Plate Film-Cooling Measurements Using PSP Gas Chromatograph Techniques
,”
Proceedings of the Fifth ASME/JSME Joint Thermal Engineering Conference
, San Diego, CA.
8.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
,
2005
, “
Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling
,”
ASME Paper No. HT2005-72363
.
9.
Gao
,
Z.
,
2007
, “
Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades
,” Ph.D thesis, Texas A&M University, College Station, TX, p. 167.
10.
Hoda
,
A.
, and
Acharya
,
S.
,
2000
. “
Predictions of a Film Cooling Jet in Cross-Flow With Different Turbulence Models
,”
ASME J. Turbomach.
,
122
, pp.
558
569
.10.1115/1.1302322
11.
York
,
W. D.
, and
Leylek
,
J. H.
,
1999
, “
Numerical Prediction of mainstream Pressure Gradient Effects in Film Cooling
,”
ASME Paper No. 99-GT-166
.
12.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1995
, “
Pressure Gradient Effects on Film Cooling
,”
ASME Paper No. 95-GT-18
.
13.
Voigt
,
S.
,
Noll
,
B.
, and
Aigner
,
M.
,
2010
, “
Aerodynamic Comparison and Validation of RANS, URANS and SAS Simulations of Flat Plate Film-Cooling
,”
ASME Paper No. GT2010-22475
.
14.
Hassan
,
J. S.
, and
Yavuzkurt
,
S.
,
2006
, “
Comparison of Four Different Two-Equation Models of Turbulence in Predicting Film Cooling Performance
,”
ASME Paper No.
GT2006-90860
.
15.
Bergeles
,
G.
,
Gosman
,
A. D.
, and
Launder
,
B. E.
,
1978
, “
The Turbulent Jet in a Cross Stream at Low Injection Rates: A Three-Dimensional Numerical Treatment
,”
Numer. Heat Transfer
,
1
, pp.
217
242
.
16.
Lakehal
,
D.
,
2002
, “
Near-Wall Modeling of Turbulent Convective Heat Transport in Film Cooling of Turbine Blades With the Aid of Direct Numerical Simulation Data
,”
ASME J. Turbomach.
,
124
, pp.
485
498
.10.1115/1.1482408
17.
Rodi
,
W.
,
1991
, “
Experience With Two-Layer Models Combining the k-ε Model with a One-Equation Model Near the Wall
,”
AIAA J.
, Paper No. 91-0216.
18.
Li
,
X.
,
Ren
,
J.
,
Jiang
,
H.
,
2011
, “
Algebraic Anisotropic Eddy Viscosity Modeling for Application to Film Cooling Flows
,”
ASME Paper No.
2011-45791.
19.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2012
, “
Full Field Algebraic Anisotropic Eddy Viscosity Model for the Film Cooling Flows
,”
ASME Paper No.
2012-68667.
20.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2012
, “
Application of the Anisotropic Eddy-Viscosity Model to Film Cooling Flows With Different Geometries
,”
J. Eng. Thermophys.
,
33
(
4
), pp.
578
582
.
21.
Cun-Liang
Liu
,
Hui-Ren
Zhu
, and
Jiang-Tao
Bai
,
2008
, “
Effect of Turbulent Prandtl Number on the Computation of Film-Cooling Effectiveness
,”
Int. J. Heat Mass Trans.
,
51
, pp.
6208
6218
.10.1016/j.ijheatmasstransfer.2008.04.039
22.
Abe
,
K.
, and
Suga
,
K.
,
2001
, “
Towards the Development of a Reynolds-Averaged Algebraic Turbulent Scalar Flux Model
,”
Int. J. Heat Fluid Flow
,
22
, pp.
19
29
.10.1016/S0142-727X(00)00062-X
23.
Sinha
,
A. K.
,
Bogard
,
D. G.
,
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
, pp.
442
449
.10.1115/1.2927894
You do not currently have access to this content.