The objective of this work is to study about the ultrafast cooling of a hot static 6 mm thick steel plate (AISI-1020) by air assisted spray cooling. The study covers the effect of air flow rate and the water impingement density on the cooling rate. The initial temperature of the plate, before the cooling starts, is kept at 900 °C. The spray was produced from a full cone high mass flux and low turn down ratio air atomizer at a fixed nozzle to plate distance. The cooling rate shows that low turn down ratio air atomized spray can generate ultra fast cooling (UFC) rate for a 6 mm thick steel plate. After cooling, the tensile strength and hardness of the cooled steel plate were examined. The surface heat flux and surface temperature calculations have been performed by using INTEMP software. The result of this study could be applied in designing of fast cooling system especially for the run-out table cooling.

References

1.
Çalik
A.
,
2009
, “
Effect of Cooling Rate on Hardness and Microstructure of AISI 1020, AISI 1040 and AISI 1060 Steels
,”
Int. J. of Phys. Sci.
,
4
(
9
), pp.
514
518
. Available at: http://www.academicjournals.org/article/article1380627919_Calik.pdf.
2.
Miernik
,
K.
,
Bogucki
,
R.
, and
Pytel
,
S.
,
2010
, “
Effect of Quenching Techniques on the Mechanical Properties of Low Carbon Structural Steel
,”
Arch. Foundry Eng.
,
10
, pp.
91
96
. Available at: http://www.afe.polsl.pl/index.php/pl/2518/effect-of-quenching-techniques-on-the-mechanical-properties-of-low-carbon-structural-steel.pdf.
3.
Liang
,
X.
,
Li
,
J.
, and
Peng
,
Y.
,
2008
, “
Effect of Water Quench Process on Mechanical Properties of Cold Rolled Dual Phase Steel Microalloyed With Niobium
,”
Mater. Lett.
,
62
, pp.
327
329
.10.1016/j.matlet.2007.05.034
4.
Nikolopoulos
,
N.
,
Theodorakakos
,
A.
, and
Bergeles
,
G.
,
2007
, “
A Numerical Investigation of the Evaporation Process of a Liquid Droplet Impinging Onto a Hot Substrate
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
303
319
.10.1016/j.ijheatmasstransfer.2006.06.012
5.
Wendelstorf
,
J.
,
Spitzer
,
K.-H.
, and
Wendelstorf
,
R.
,
2008
, “
Spray Water Cooling Heat Transfer at High Temperature and Liquid Mass Flux
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4902
4910
.10.1016/j.ijheatmasstransfer.2008.01.032
6.
Bin
,
H.
,
Hua
,
L. X.
,
Guo-Dong
,
W.
, and
Guang-fu
,
S.
,
2005
, “
Development of Cooling Process Technique in Hot Strip Mill
,”
J. Iron Steel Res. Int.
,
12
(
1
), pp.
12
16
.
7.
Cho
,
M. J.
,
Thomas
,
B. G.
, and
Lee
,
P. J.
,
2008
, “
Three Dimensional Numerical Study of Impinging Water Jet in Runout Table Cooling Processes
,”
Metall. Mater. Trans. B
,
39
(
4
), pp.
593
602
.10.1007/s11663-008-9160-8
8.
Lucas
,
A.
,
Simon
,
P.
,
Bourdon
,
G.
,
Herman
,
J. C.
,
Riche
,
P.
,
Neutjens
,
J.
, and
Harlet
,
P.
,
2004
, “
Metallurgical Aspect of Ultra Fast Cooling in Front of Down-Coiler
,”
J. Iron Steel Res. Int.
,
75
, pp.
139
146
.
9.
Cornet
,
X.
, and
Herman
,
J. C.
,
2003
, “
Methods for Making a Multiphase Hot-Rolled Steel Strip
,” U.S. Patent No. 6,821,364 B2.
10.
Oliveira
,
M. De.
,
Ward
,
J.
,
Garwood
,
D. R.
, and
Wallis
,
R. A.
,
2002
, “
Quenching of Aerospace Forgings From High Temperature Using Air-Assisted Atomized Water Sprays
,”
J. Mater. Eng. Perform.
,
11
(
1
), pp.
80
85
.10.1007/s11665-002-0012-4
11.
Montes
,
R. J. J.
,
Castillejos
,
E. A.
,
Acosta
,
G. F. A.
,
Gutiérrez
,
M. E. P.
, and
Herrera
,
G. M. A.
,
2008
, “
Effect of the Operating Conditions of Air-Mists Nozzles on the Thermal Evolution of Continuously Cast Thin Slabs
,”
Can. Metall. Q.
,
47
(
2
), pp.
187
204
.10.1179/000844308794408416
12.
Bhattacharya
,
P.
,
Samanta
,
A. N.
, and
Chakraborty
,
S.
,
2009
, “
Spray Evaporative Cooling to Achieve Ultra Fast Cooling in Run Out Table
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1741
1747
.10.1016/j.ijthermalsci.2009.01.015
13.
Puschmann
,
F.
, and
Specht
,
E.
,
2004
, “
Transient Measurement of Heat Transfer in Metal Quenching With Atomized Sprays
,”
Exp. Therm. Fluid Sci.
,
28
(
6
), pp.
607
615
.10.1016/j.expthermflusci.2003.09.004
14.
Al-Ahmadi
,
H. M.
, and
Yao
,
S. C.
,
2008
, “
Spray Cooling of High Temperature Metals Using High Mass Flux Industrial Nozzle
,”
Exp. Heat Transfer
,
21
(
1
), pp.
38
54
.10.1080/08916150701647827
15.
Rein
,
M.
,
1993
, “
Phenomena of Liquid Drop Impact on Solid and Liquid Surface
,”
Fluid Dyn. Res.
,
12
(
8
), pp.
61
93
.10.1016/0169-5983(93)90106-K
16.
Yarin
,
A. L.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Bouncing
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
159
192
.10.1146/annurev.fluid.38.050304.092144
17.
Moreira
,
A. L. N.
,
Moita
,
A. S.
, and
Panao
,
M. R.
,
2010
, “
Advances and Challenges Explaining Fuel Spray Impingement: How Much of Single Droplet Impact Research is Useful?
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
554
580
.10.1016/j.pecs.2010.01.002
18.
Mohapatra
,
S. S.
,
Chakraborty
,
S.
, and
Pal
,
S. K.
,
2012
, “
Experimental Studies on Different Cooling Processes to Achieve Ultra Fast Cooling Rate for Hot Steel Plate
,”
Int. J. Exp. Heat Transfer
,
25
(
2
), pp.
111
126
.10.1080/08916152.2011.582567
19.
Negeed
,
E. S. R.
,
Ishihara
,
N.
,
Tagashira
,
K.
,
Hidaka
,
S.
,
Kohno
,
M.
,
Takata
,
Y.
,
2010
, “
Experimental Study on the Effect of Surface Conditions on Evaporation of Sprayed Liquid Droplet
,”
Int. J. Thermal Sci.
,
49
(
12
), pp.
2250
2271
.10.1016/j.ijthermalsci.2010.08.008
20.
Oliveria
,
M. S. A.
, and
Sousa
,
A. C. M.
,
2001
, “
Neural Network Analysis of Experimental Data for Air/Water Spray Cooling
,”
J. Mater. Process Technol.
,
113
(
1–3
), pp.
439
445
.10.1016/S0924-0136(01)00646-X
21.
Alam
,
U.
,
Krol
,
J.
,
Specht
,
E.
, and
Schmidt
,
J.
,
2008
, “
Enhancement and Local Regulation of Metal Quenching Using Atomized Sprays
,”
J. ASTM Int.
,
5
(
10
), pp.
1
10
.10.1520/JAI101110
22.
Sakai
,
T.
,
Kito
,
M.
,
Saito
,
M.
, and
Kanbe
,
T.
,
1978
, “
Characteristics of Internal Mixing Twin-Fluid Atomizer
,”
Proceedings of the 1st International Conference on Liquid Atomization and Sprays
,
Tokyo
, pp.
235
241
.
23.
Li
,
D.
, and
Wells
,
M. A.
,
2004
,
Effect of Surface Thermocouple Installation on the Discrepancy of the Measured Thermal History and Predicted Surface Heat Flux During a Quench Operation
,”
Metall. Mater. Trans. B
,
36
(
3
), pp.
343
354
.10.1007/s11663-005-0064-6
24.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
2003
, “
INTEMP—Inverse Heat Transfer Analysis-User's Manual
,” Trucomp Co., Fountain Valley, Canada, pp.
1
47
.
25.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
1997
,
Practical Inverse Analysis in Engineering
,
CRC Press LLC
,
Boca Raton, FL
.
26.
Busby
,
H. R.
, and
Trujillo
,
D. M.
,
1985
, “
Numerical Solution to a Two-Dimensional Inverse Heat Conduction Problem
,”
Int. J. Numer. Methods Eng.
,
21
(
2
), pp.
349
359
.10.1002/nme.1620210211
27.
Lecadia
,
H.
,
Passos
,
J. C.
, and
De Silva
,
A. F. C.
,
2011
, “
Heat Transfer Behavior of a High Temperature Steel Plate Cooled by a Subcooled Impinging Circular Water Jet
,”
7th International Conference on Boiling Heat Transfer
, May 3–7,
Brazil
.
28.
Maynier
,
P.
,
Jungmann
,
B.
,
Dollet
,
J.
, and
Creusot
,
L.
,
1978
, “
System for the Prediction of the Mechanical Properties of Low Alloy Steel Products, Hardenability Concepts With Applications to Steel
,”
Metall. Soc. AIME
, pp.
518
545
.
You do not currently have access to this content.