Electroosmosis is the main mechanism for flow generation in lab-on-a-chip (LOC) devices. The temperature rise due to the Joule heating phenomenon, associated with the electroosmosis, may be detrimental for samples being considered in LOCs. Hence, a complete understanding of the heat transfer physics associated with the electroosmotic flow is of high importance in design and active control of LOCs. The objective of the present study is to estimate the temperature rise and the thermal entry length in electroosmotic flow through rectangular microchannels, having potential applications in LOC devices. Along this line, the power-law rheological model is used to account for non-Newtonian behavior of the common biofluids encountered in these devices. A mixed type of thermal boundary condition is employed at the channel surface, instead of routinely presumed constant wall heat flux or constant wall temperature conditions. A finite difference-based numerical method is employed for solving the governing equations in dimensionless form. An approximate solution, based on the premise of a uniform temperature field throughout the channel cross section, is also obtained for the bulk mean temperature, which is found to be of high accuracy. This, accompanied by the assessments of the temperature profile, reveals that the temperature variations in the channel cross section are negligible, and as a result, the bulk mean temperature can be used as a very precise estimate of the maximum temperature in an LOC device. Moreover, the evaluation of the entry length shows that a thermally fully developed flow is hardly achieved in practical applications because of small length scales involved. Accordingly, the maximum temperature rise may significantly be smaller than what is calculated based on a thermally fully developed flow assumption.

References

1.
Maynes
,
D.
, and
Webb
,
B. W.
,
2003
, “
Fully Developed Electro-Osmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
46
(
8
), pp.
1359
1369
.10.1016/S0017-9310(02)00423-4
2.
Maynes
,
D.
, and
Webb
,
B. W.
,
2004
, “
The Effect of Viscous Dissipation in thermally Fully-Developed Electro-Osmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
5
), pp.
987
999
.10.1016/j.ijheatmasstransfer.2003.08.016
3.
Wang
,
X.
,
Wang
,
S.
,
Gendhar
,
B.
,
Cheng
,
C.
,
Byun
,
C. K.
,
Li
,
G.
,
Zhao
,
M.
, and
Liu
,
S.
,
2009
, “
Electroosmotic Pumps for Microflow Analysis
,”
Trends Analyt. Chem.
,
28
(
1
), pp.
64
74
.10.1016/j.trac.2008.09.014
4.
Probstein
,
R. F.
,
1994
,
Physicochemical Hydrodynamics
,
Wiley
,
New York
.
5.
Masliyah
,
J. H.
, and
Bhattacharjee
,
S.
,
2006
,
Electrokinetic and Colloid Transport Phenomena
,
Wiley
,
Hoboken, NJ
.
6.
Reuss
,
F. F.
,
1809
, “
Charge-Induced Flow
,”
Proceedings of the Imperial Society of Naturalists of Moscow
,
3
, pp.
327
344
.
7.
Burgreen
,
D.
, and
Nakache
,
F. R.
,
1964
, “
Electrokinetic Flow in Ultrafine Capillary Slits
,”
J. Phys. Chem.
,
68
(
5
), pp.
1084
1091
.10.1021/j100787a019
8.
Rice
,
C. L.
, and
Whitehead
,
R.
,
1965
, “
Electrokinetic Flow in a Narrow Cylindrical Capillary
,”
J. Phys. Chem.
,
69
(
11
), pp.
4017
4024
.10.1021/j100895a062
9.
Levine
,
S.
,
Marriott
,
J. R.
,
Neale
,
G.
, and
Epstein
,
N.
,
1975
, “
Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta-Potentials
,”
J. Colloid Interface Sci.
,
52
(
1
), pp.
136
149
.10.1016/0021-9797(75)90310-0
10.
Kang
,
Y.
,
Yang
,
C.
, and
Huang
,
X.
,
2002
, “
Electroosmotic Flow in a Capillary Annulus With High Zeta Potentials
,”
J. Colloid Interface Sci.
,
253
(
2
), pp.
285
294
.10.1006/jcis.2002.8453
11.
Yang
,
D.
,
2011
, “
Analytical Solution of Mixed Electroosmotic and Pressure-Driven Flow In Rectangular Microchannels
,”
Key Eng. Mater.
,
483
, pp.
679
683
.10.4028/www.scientific.net/KEM.483.679
12.
Wang
,
C. Y.
,
Liu
,
Y. H.
, and
Chang
,
C. C.
,
2008
, “
Analytical Solution of Electro-Osmotic Flow in a Semicircular Microchannel
,”
Phys. Fluids
,
20(6)
, p.
063105
.10.1063/1.2939399
13.
Das
,
S.
, and
Chakraborty
,
S.
,
2006
, “
Analytical Solutions for Velocity, Temperature and Concentration Distribution in Electroosmotic Microchannel Flows of a Non-Newtonian Bio-Fluid
,”
Anal. Chim. Acta
,
559
(
1
), pp.
15
24
.10.1016/j.aca.2005.11.046
14.
Zhao
,
C.
,
Zholkovskij
,
E.
,
Masliyah
,
J.
, and
Yang
,
C.
,
2008
, “
Analysis of Electroosmotic Flow of Power-Law Fluids in a Slit Microchannel
,”
J. Colloid Interface Sci.
,
326
(
2
), pp.
503
510
.10.1016/j.jcis.2008.06.028
15.
Zhao
,
C.
, and
Yang
,
C.
,
2010
, “
Nonlinear Smoluchowski Velocity for Electroosmosis of Power-Law Fluids Over a Surface With Arbitrary Zeta Potentials
,”
Electrophoresis
,
31
(
5
), pp.
973
979
.10.1002/elps.200900564
16.
Vasu
,
N.
, and
De
,
S.
,
2010
, “
Electroosmotic Flow of Power-Law Fluids at High Zeta Potentials
,”
Colloids Surf., A
,
368
(
1–3
), pp.
44
52
.10.1016/j.colsurfa.2010.07.014
17.
Tang
,
G. H.
,
Li
,
X. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
Electroosmotic Flow of Non-Newtonian Fluid in Microchannels
,”
J. Non-Newtonian Fluid Mech.
,
157
(
1–2
), pp.
133
137
.10.1016/j.jnnfm.2008.11.002
18.
Babaie
,
A.
,
Sadeghi
,
A.
, and
Saidi
,
M. H.
,
2011
, “
Combined Electroosmotically and Pressure Driven Flow of Power-Law Fluids in a Slit Microchannel
,”
J. Non-Newtonian Fluid Mech.
,
166
(
14–15
), pp.
792
798
.10.1016/j.jnnfm.2011.04.012
19.
Vakili
,
M. A.
,
Sadeghi
,
A.
,
Saidi
,
M. H.
, and
Mozafari
,
A. A.
,
2012
, “
Electrokinetically Driven Fluidic Transport of Power-Law Fluids in Rectangular Microchannels
,”
Colloids Surf., A
,
414
, pp.
440
456
.10.1016/j.colsurfa.2012.07.030
20.
Park
,
H. M.
, and
Lee
,
W. M.
,
2008
, “
Helmholtz-Smoluchowski Velocity for Viscoelastic Electroosmotic Flows
,”
J. Colloid Interface Sci.
,
317
(
2
), pp.
631
636
.10.1016/j.jcis.2007.09.027
21.
Park
,
H. M.
, and
Lee
,
W. M.
,
2008
, “
Effect of Viscoelasticity on the Flow Pattern and the Volumetric Flow Rate in Electroosmotic Flows Through a Microchannel
,”
Lab Chip
,
8
(
7
), pp.
1163
1170
.10.1039/b800185e
22.
Dhinakaran
,
S.
,
Afonso
,
A. M.
,
Alves
,
M. A.
, and
Pinho
,
F. T.
,
2010
, “
Steady Viscoelastic Fluid Flow Between Parallel Plates Under Electro-Osmotic Forces: Phan-Thien-Tanner Model
,”
J. Colloid Interface Sci.
,
344
(
2
), pp.
513
520
.10.1016/j.jcis.2010.01.025
23.
Afonso
,
A. M.
,
Alves
,
M. A.
, and
Pinho
,
F. T.
,
2009
, “
Analytical Solution of Mixed Electro-Osmotic/Pressure Driven Flows of Viscoelastic Fluids in Microchannels
,”
J. Non-Newtonian Fluid Mech.
,
159
(
1–3
), pp.
50
63
.10.1016/j.jnnfm.2009.01.006
24.
Sousa
,
J. J.
,
Afonso
,
A. M.
,
Pinho
,
F. T.
, and
Alves
,
M. A.
,
2011
, “
Effect of the Skimming Layer on Electro-Osmotic-Poiseuille Flows of Viscoelastic Fluids
,”
Microfluid. Nanofluid.
,
10
(
1
), pp.
107
122
.10.1007/s10404-010-0651-y
25.
Sadeghi
,
A.
,
Fattahi
,
M.
, and
Hassan Saidi
,
M.
,
2011
, “
An Approximate Analytical Solution for Electro-Osmotic Flow of Power-Law Fluids in a Planar Microchannel
,”
ASME J. Heat Transfer
,
133(9)
, p.
091701
.10.1115/1.4003968
26.
Chen
,
C. H.
,
2011
, “
Electro-Osmotic Heat Transfer of Non-Newtonian Fluid Flow in Microchannels
,”
ASME J. Heat Transfer
,
133
(
7
), p.
071705
.10.1115/1.4003573
27.
Sadeghi
,
A.
,
Saidi
,
M. H.
, and
Mozafari
,
A. A.
,
2011
, “
Heat Transfer Due to Electroosmotic Flow of Viscoelastic Fluids in a Slit Microchannel
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
4069
4077
.10.1016/j.ijheatmasstransfer.2011.04.004
28.
Babaie
,
A.
,
Saidi
,
M. H.
, and
Sadeghi
,
A.
,
2012
, “
Electroosmotic Flow of Power-Law Fluids With Temperature Dependent Properties
,”
J. Non-Newtonian Fluid Mech.
,
185–186
, pp.
49
57
.10.1016/j.jnnfm.2012.08.005
29.
Babaie
,
A.
,
Saidi
,
M. H.
, and
Sadeghi
,
A.
,
2012
, “
Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Flow of Power-Law Fluids in a Slit Microchannel
,”
Int. J. Therm. Sci.
,
53
, pp.
71
79
.10.1016/j.ijthermalsci.2011.10.015
30.
Chen
,
C.-H.
,
2012
, “
Fully-Developed Thermal Transport in Combined Electroosmotic and Pressure Driven Flow of Power-Law Fluids in Microchannels
,”
Int. J. Heat Mass Transfer
,
55
(
7–8
), pp.
2173
2183
.10.1016/j.ijheatmasstransfer.2011.12.022
31.
Shamshiri
,
M.
,
Khazaeli
,
R.
,
Ashrafizaadeh
,
M.
, and
Mortazavi
,
S.
,
2012
, “
Electroviscous and Thermal Effects on Non-Newtonian Liquid Flows Through Microchannels
,”
J. Non-Newtonian Fluid Mech.
,
173–174
(
0
), pp.
1
12
.10.1016/j.jnnfm.2012.01.011
32.
Coelho
,
P. M.
,
Alves
,
M. A.
, and
Pinho
,
F. T.
,
2012
, “
Forced Convection in Electro-Osmotic/Poiseuille Micro-Channel Flows of Viscoelastic Fluids: Fully Developed Flow With Imposed Wall Heat Flux
,”
Microfluid. Nanofluid.
,
12
(
1–4
), pp.
431
449
.10.1007/s10404-011-0886-2
33.
Sadeghi
,
A.
,
Saidi
,
M. H.
,
Veisi
,
H.
, and
Fattahi
,
M.
,
2012
, “
Thermally Developing Electroosmotic Flow of Power-Law Fluids in a Parallel Plate Microchannel
,”
Int. J. Therm. Sci.
,
61
, pp.
106
117
.10.1016/j.ijthermalsci.2012.06.006
34.
Sadeghi
,
A.
,
Veisi
,
H.
,
Saidi
,
M. H.
, and
Asghar Mozafari
,
A.
,
2013
, “
Electroosmotic Flow of Viscoelastic Fluids Through a Slit Microchannel With a Step Change in Wall Temperature
,”
ASME J. Heat Transfer
,
135
(
2
), p.
021706
.10.1115/1.4007414
35.
Zhao
,
C.
, and
Yang
,
C.
,
2012
, “
Joule Heating Induced Heat Transfer for Electroosmotic Flow of Power-Law Fluids in a Microcapillary
,”
Int. J. Heat Mass Transfer
,
55
(
7–8
), pp.
2044
2051
.10.1016/j.ijheatmasstransfer.2011.12.005
36.
Chen
,
X. Y.
,
Toh
,
K. C.
,
Chai
,
J. C.
, and
Yang
,
C.
,
2004
, “
Developing Pressure-Driven Liquid Flow in Microchannels Under the Electrokinetic Effect
,”
Int. J. Eng. Sci.
,
42
(
5–6
), pp.
609
622
.10.1016/j.ijengsci.2003.07.008
37.
Stone
,
H. A.
,
Stroock
,
A. D.
, and
Ajdari
,
A.
,
2004
, “
Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
381
411
.10.1146/annurev.fluid.36.050802.122124
38.
Hussain
,
M. A.
,
Kar
,
S.
, and
Puniyani
,
R. R.
,
1999
, “
Relationship Between Power Law Coefficients and Major Blood Constituents Affecting the Whole Blood Viscosity
,”
J. Biosci.
,
24
(
3
), pp.
329
337
.10.1007/BF02941247
39.
Yang
,
R. J.
,
Fu
,
L. M.
, and
Hwang
,
C. C.
,
2001
, “
Electroosmotic Entry Flow in a Microchannel
,”
J. Colloid Interface Sci.
,
244
(
1
), pp.
173
179
.10.1006/jcis.2001.7847
40.
Sadeghi
,
A.
,
Yavari
,
H.
,
Saidi
,
M. H.
, and
Chakraborty
,
S.
,
2011
, “
Mixed Electroosmotically and Pressure-Driven Flow With Temperature-Dependent Properties
,”
J. Thermophys. Heat Transfer
,
25
(
3
), pp.
432
442
.10.2514/1.T3638
41.
Yavari
,
H.
,
Sadeghi
,
A.
,
Saidi
,
M. H.
, and
Chakraborty
,
S.
,
2012
, “
Combined Influences of Viscous Dissipation, Non-Uniform Joule Heating and Variable Thermophysical Properties on Convective Heat Transfer in Microtubes
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
762
772
.10.1016/j.ijheatmasstransfer.2011.10.033
42.
Park
,
H. M.
,
Lee
,
J. S.
, and
Kim
,
T. W.
,
2007
, “
Comparison of the Nernst-Planck Model and the Poisson-Boltzmann Model for Electroosmotic Flows in Microchannels
,”
J. Colloid Interface Sci.
,
315
(
2
), pp.
731
739
.10.1016/j.jcis.2007.07.007
43.
Yang
,
C.
,
Li
,
D.
, and
Masliyah
,
J. H.
,
1998
, “
Modeling Forced Liquid Convection in Rectangular Microchannels With Electrokinetic Effects
,”
Int. J. Heat Mass Transfer
,
41
(
24
), pp.
4229
4249
.10.1016/S0017-9310(98)00125-2
44.
Yavari
,
H.
,
Sadeghi
,
A.
, and
Saidi
,
M. H.
,
2012
, “
Hydrodynamic and Thermal Characteristics of Combined Electroosmotic and Pressure Driven Flow in a Microannulus
,”
ASME J. Heat Transfer
,
134
(
10
), p.
101703
.10.1115/1.4006816
45.
Anderson
,
A.
,
Tannehill
,
J. C.
, and
Pletcher
,
R. H.
,
1984
,
Computational Fluid Mechanics and Heat Transfer
,
Hemisphere
,
Washington, DC
.
46.
Iverson
,
B. D.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2004
, “
Thermally Developing Electroosmotic Convection in Rectangular Microchannels With Vanishing Debye-Layer Thickness
,”
J. Thermophys. Heat Transfer
,
18
(
4
), pp.
486
493
.10.2514/1.3769
47.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2005
,
Microflows and Nanoflows, Fundamentals and Simulation
,
Springer
,
New York
.
You do not currently have access to this content.