The pressure effects of expanding the cross section of microchannels along the direction of flow are investigated across four rates of channel expansion in the flow boiling of R-134a. Prior investigation by the authors detailed the fabrication of four copper microchannel arrays and the pumped-loop apparatus developed to facilitate interchange of the microchannel specimens, allowing consistency across experiments. Significant beneficial pressure effects are observed to result from the expansion, including reduction by half of the pumping cost per flow rate at critical heat flux. The improvements are seen with small expansions, and greater expansion yields diminishing returns. The high pressure drops associated with microchannel evaporators are effectively reduced by expanding channel geometry, and the low-frequency system spectral response indicates that expanding channel arrays typically carry less energy in oscillations up to 2.5 Hz, suggesting amelioration of oscillatory instabilities. Results are discussed in light of a comparative force analysis, with the balance of these forces linked to the observed behavior of the pressure drop and heat flux relationship.

References

1.
Miner
,
M. J.
,
Phelan
,
P. E.
,
Ortiz
,
C. A.
, and
Odom
,
B. A.
, 2013, “
Experimental Measurements of Critical Heat Flux in Expanding Microchannel Arrays
,”
ASME J. Heat Transfer
,
135
, p. 101501.10.1115/1.4024388
2.
Poiseuille
,
J.-L.-M.
,
1843
,
Recherches Expérimentales sur le Mouvement des Liquides Dans les Tubes de Très-Petits Diamétres
,
Comptes Rendus de l'Académie des Sciences
,
Paris
.
3.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
4.
El-Masri
,
M. A.
, and
Louis
,
J. F.
,
1978
, “
On the Design of High-Temperature Gas Turbine Blade Water-Cooling Channels
,”
ASME J. Eng. Power
,
100
(
4
), pp.
586
591
.10.1115/1.3446400
5.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase Two-Component Flow in Pipes
,”
J. Chem. Eng. Prog.
,
45
(
1
), pp.
39
48
.
6.
Lazarek
,
G. M.
, and
Black
,
S. H.
,
1982
, “
Evaporative Heat Transfer, Pressure Drop, and Critical Heat Flux in a Small Vertical Tube With R-113
,”
Int. J. Heat Mass Transfer
,
25
(
7
), pp.
945
960
.10.1016/0017-9310(82)90070-9
7.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Thermal Fluid Sci.
,
26
(
2
), pp.
389
407
.10.1016/S0894-1777(02)00150-4
8.
Revellin
,
R.
, and
Thome
,
J. R.
,
2007
, “
Adiabatic Two-Phase Frictional Pressure Drops in Microchannels
,”
Exp. Therm. Fluid Sci.
,
31
(
7
), pp.
673
685
.10.1016/j.expthermflusci.2006.07.001
9.
Tran
,
T. N.
,
Chyu
,
M. C.
,
Wambsganss
,
M. W.
, and
France
,
D. M.
,
2000
, “
Two-Phase Pressure Drop of Refrigerants During Flow Boiling in Small Channels: An Experimental Investigation and Correlation Development
,”
Int. J. Multiphase Flow
,
26
(
11
), pp.
1739
1754
.10.1016/S0301-9322(99)00119-6
10.
Lee
,
P.-S.
, and
Garimella
,
S. V.
,
2008
, “
Saturated Flow Boiling Heat Transfer and Pressure Drop in Silicon Microchannel Arrays
,”
Int. J. Heat Mass Transfer
,
51
(
3
), pp.
789
806
.10.1016/j.ijheatmasstransfer.2007.04.019
11.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2012
, “
Flow-Regime-Based Modeling of Heat Transfer and Pressure Drop in Microchannel Flow Boiling
,”
Int. J. Heat Mass Transfer
,
55
, pp.
1246
1260
.10.1016/j.ijheatmasstransfer.2011.09.024
12.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2009
, “
Pressure Effects on Flow Boiling Instabilities in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
1
), pp.
271
280
.10.1016/j.ijheatmasstransfer.2008.06.015
13.
Mishima
,
K.
, and
Hibiki
,
T.
,
1996
, “
Some Characteristics of Airwater Two-Phase Flow in Small Diameter Vertical Tubes
,”
Int. J. Multiphase Flow
,
22
(
4
), pp.
703
712
.10.1016/0301-9322(96)00010-9
14.
Lee
,
H. J.
, and
Lee
,
S. Y.
,
2001
, “
Pressure Drop Correlations for Two Phase Flow Within Horizontal Rectangular Channels With Small Heights
,”
Int. J. Multiphase Flow
,
27
(
5
), pp.
783
796
.10.1016/S0301-9322(00)00050-1
15.
Zhang
,
M.
, and
Webb
,
R.
,
2001
, “
Correlation of Two-Phase Friction for Refrigerants in Small-Diameter Tubes
,”
Exp. Therm. Fluid Sci.
,
25
(
3
), pp.
131
139
.10.1016/S0894-1777(01)00066-8
16.
Mudawar
,
I.
,
2011
, “
Two-Phase Microchannel Heat Sinks: Theory, Applications, and Limitations
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041002
.10.1115/1.4005300
17.
Chen
,
T.
, and
Garimella
,
S. V.
,
2012
, “
A Study of Critical Heat Flux During Flow Boiling in Microchannel Heat Sinks
,”
ASME J. Heat Transfer
,
134
(
1
), p.
011504
.10.1115/1.4004715
18.
Odom
,
B. A.
,
Miner
,
M. J.
,
Ortiz
,
C. A.
,
Sherbeck
,
J.
,
Prasher
,
R.
, and
Phelan
,
P. E.
,
2012
, “
Microchannel Two-Phase Flow Oscillation Control with an Adjustable Inlet Orifice
,”
ASME J. Heat Transfer
,
134
(
12
), p.
122901
.10.1115/1.4007202
19.
Koşar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2006
, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
251
260
.10.1115/1.2150837
20.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2006
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
389
397
.10.1115/1.2165208
21.
Basu
,
S.
,
Ndao
,
S.
,
Michna
,
G. J.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2011
, “
Flow Boiling of R134a in Circular Microtubes—Part II: Study of Critical Heat Flux Condition
,”
ASME J. Heat Transfer
,
133
(
5
), p.
051503
.10.1115/1.4003160
22.
Hwang
,
J.
,
Tseng
,
F.
, and
Pan
,
C.
,
2005
, “
Ethanol—CO2 Two-Phase Flow in Diverging and Converging Microchannels
,”
Int. J. Multiphase Flow
,
31
(
5
), pp.
548
570
.10.1016/j.ijmultiphaseflow.2005.01.011
23.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2009
, “
The Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
21
), pp.
5204
5212
.10.1016/j.ijheatmasstransfer.2009.04.025
24.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2005
, “
Numerical Study of the Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
International Conference on Microchannels and Minichannels ICMM2005-75143, ASME
.
25.
Lee
,
P. C.
, and
Pan
,
C.
,
2007
, “
Boiling Heat Transfer and Two-Phase Flow of Water in a Single Shallow Microchannel With a Uniform or Diverging Cross Section
,”
J. Micromech. Microeng.
,
18
(
2
), p.
025005
.10.1088/0960-1317/18/2/025005
26.
Lu
,
C. T.
, and
Pan
,
C.
,
2008
, “
Stabilization of Flow Boiling in Microchannel Heat Sinks With a Diverging Cross-Section Design
,”
J. Micromech. Microeng.
,
18
(
7
), p.
075035
.10.1088/0960-1317/18/7/075035
27.
Lu
,
C. T.
, and
Pan
,
C.
,
2009
, “
A Highly Stable Microchannel Heat Sink for Convective Boiling
,”
J. Micromech. Microeng.
,
19
(
5
), p.
055013
.10.1088/0960-1317/19/5/055013
28.
Lu
,
C. T.
, and
Pan
,
C.
,
2011
, “
Convective Boiling in a Parallel Microchannel Heat Sink With a Diverging Cross Section and Artificial Nucleation Sites
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
810
815
.10.1016/j.expthermflusci.2010.08.018
29.
Balasubramanian
,
K.
,
Lee
,
P. C.
,
Jin
,
L.
,
Chou
,
S.
,
Teo
,
C.
, and
Gao
,
S.
,
2011
, “
Experimental Investigations of Flow Boiling Heat Transfer and Pressure Drop in Straight and Expanding Microchannels: A Comparative Study
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2413
2421
.10.1016/j.ijthermalsci.2011.07.007
30.
Liu
,
T.-L.
,
Fu
,
B.-R.
, and
Pan
,
C.
,
2012
, “
Boiling Two-Phase Flow and Efficiency of Co- and Counter-Current Microchannel Heat Exchangers With Gas Heating
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
6130
6141
.10.1016/j.ijheatmasstransfer.2012.06.032
31.
Miner
,
M. J.
, and
Phelan
,
P. E.
, “
Effect of Cross-Sectional Perturbation on Critical Heat Flux Criteria in Microchannels
,”
ASME J. Heat Transfer
(in press).
32.
MATLAB
,
2010
,
Version 7.13.0 (R2011b)
,
The MathWorks Inc.
,
Natick, MA
.
33.
Kandlikar
,
S. G.
,
2010
, “
Scale Effects on Flow Boiling Heat Transfer in Microchannels: A Fundamental Perspective
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1073
1085
.10.1016/j.ijthermalsci.2009.12.016
34.
Young
,
T.
,
1805
, “
An Essay on the Cohesion of Fluids
,”
Philos. Trans. R. Soc. London
,
95
, pp.
65
87
.10.1098/rstl.1805.0005
35.
Laplace
,
P. S.
,
1829
,
Méchanique Céleste
,
Hilliard
,
Gray, Little, and Wilkins, Boston, MA
.
You do not currently have access to this content.