Physics of ultrasound-assisted augmentation of saturated nucleate boiling through the interaction of multiphase fluid flow is revealed in the present work. Different regimes of influence of ultrasound, ranging from augmentation to deterioration and even no effect, as reported in literature in a contradictory fashion, have been observed. However unlike the previous studies, here it has been clearly demonstrated that this apparent anomaly lies in the different natures of interactions between the influencing parameters like heat flux, ultrasonic frequency, and pressure amplitude. The present results clearly bring out an interactive effect of these operating parameters with surface parameter like surface roughness. A mechanistic model unifying all these parameters has been presented to explain quantitatively the physics of the interaction. The model-based predictions match experimental results quite well suggesting the validity of the hypothesis on liquid–vapor-surface interaction through the process of nucleation and its site density, on which the model is built, and thus revealing the underlying physics.

References

1.
Sellers
,
S. M.
,
2000
, “
Heat Transfer Resulting From the Evaporation of Liquid Droplets on a Horizontal Heated Surface
,” Ph.D. Dissertation, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
2.
Zerby
,
M.
, and
Kuszewski
,
M.
,
2002
, “
Final Report on Next Generation Thermal Management (NGTM) for Power Electronics
,” NSWCCD Technical Report No. TR-82-2002012.
3.
Bar-Cohen
,
A.
,
1993
, “
Thermal Management of Electronic Components With Dielectric Liquids
,”
JSME Int. J., Ser. B
,
36
, pp.
1
25
.10.1299/jsmeb.36.1
4.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
, pp.
122
141
.10.1109/6144.926375
5.
Gaertner
,
R. F.
,
1967
, “
Method and Means for Increasing the Heat Transfer Coefficient Between a Wall and Boiling Liquid
,” U.S. Patent No. 3,301,314.
6.
Takata
,
Y.
,
Hidaka
,
S.
, and
Uraguchi
,
T.
,
2006
, “
Boiling Feature on a Super Water-Repellent Surface
,”
Heat Transfer Eng.
,
27
(
8
), pp.
25
30
.10.1080/01457630600793962
7.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
715
726
.10.1016/0017-9310(81)90015-6
8.
Wen
,
M.-Y.
, and
Ho
,
C.-Y.
,
2003
, “
Pool Boiling Heat Transfer of Deionized and Degassed Water in Vertical/Horizontal V-Shaped Geometries
,”
Heat Mass Transfer
,
39
, pp.
729
736
.10.1007/s00231-002-0358-z
9.
Chatterjee
,
D.
, and
Arakeri
,
V. H.
,
2004
, “
Some Investigations on the Use of Ultrasonics in Travelling Bubble Cavitation Control
,”
J. Fluid Mech.
,
504
, pp.
365
389
.10.1017/S0022112004008262
10.
Parlitz
,
U.
,
Mettin
,
R.
,
Luther
,
S.
,
Akhatov
, I
.
,
Voss
,
M.
, and
Lauterborn
,
W.
,
1999
, “
Spatiotemporal Dynamics of Acoustic Cavitation Bubble Clouds
,”
Philos. Trans. R. Soc. London, Ser. A
,
357
, pp.
313
334
.10.1098/rsta.1999.0329
11.
Leighton
,
T. G.
,
1995
, “
Bubble Population Phenomena in Acoustic Cavitation
,”
Ultrason. Sonochem.
,
2
(
2
), pp.
S123
S136
.10.1016/1350-4177(95)00021-W
12.
Hao
,
Y.
,
Oguz
,
H. N.
, and
Prosperetti
,
A.
,
2001
, “
The Action of Pressure-Radiation Forces on Pulsating Vapor Bubbles
,”
Phys. Fluids
,
13
, pp.
1167
–1177.10.1063/1.1359746
13.
Isakoff
,
S. E.
,
1956
, “
Effect of an Ultrasonic Field on Boiling Heat Transfer-Exploratory Investigation
,” Heat Transfer and Fluid Mechanics Institute, Stanford University Press, Stanford, CA, p.
15
.
14.
Ornatskii
,
A. P.
, and
Shcherbakov
,
V. K.
,
1959
, “
Intensification of Heat Transfer in the Critical Region With the Aid of Ultrasonics
,”
Teploenergetika (Moscow, Russ. Fed.)
,
6
(
1
), pp.
84
–85.
15.
Romie
,
F. E.
, and
Aronson
,
C. A.
,
1961
, “
Experimental Investigation of the Effects of Ultrasonic Vibration on Burnout Heat Flux With Boiling Water
,” Final Summary Report.
16.
Wong
,
S. W.
, and
Chon
,
W. Y.
,
1969
, “
Effects of Ultrasonic Vibrations on Heat Transfer to Liquids by Natural Convection and by Boiling
,”
AIChE J.
,
15
, pp.
281
288
.10.1002/aic.690150229
17.
Park
,
K. A.
, and
Bergles
,
A. E.
,
1988
, “
Ultrasonic Enhancement of Saturated and Subcooled Pool Boiling
,”
Int. J. Heat Mass Transfer
,
31
(
3
), pp.
664
667
.10.1016/0017-9310(88)90049-X
18.
Kim
,
H.-Y.
,
Kim
,
Y. G.
, and
Kang
,
B. H.
,
2004
, “
Enhancement of Natural Convection and Pool Boiling Heat Transfer Via Ultrasonic Vibration
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2831
2840
.10.1016/j.ijheatmasstransfer.2003.11.033
19.
Zhou
,
D. W.
,
Liu
,
D. Y.
,
Hu
,
X. G.
, and
Ma
,
C. F.
,
2002
, “
Effect of Acoustic Cavitation on Boiling Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
26
(
8
), pp.
931
938
.10.1016/S0894-1777(02)00201-7
20.
Markels
,
S. M.
,
Durfee
,
R. L.
, and
Richardson
,
R.
,
1960
, “
Annual Report of Methods to Increase Burnout Heat Transfer
,” AEC Report No. NYO-9500.
21.
Iida
,
Y.
, and
Tsutsui
,
K.
,
1992
, “
Effects of Ultrasonic Waves on Natural Convection, Nucleate Boiling and Film Boiling Heat Transfer From a Wire to a Saturated Liquid
,”
Exp. Therm. Fluid Sci.
,
5
, pp.
108
115
.10.1016/0894-1777(92)90059-E
22.
Heffington
,
S.
, and
Glezer
,
A.
,
2004
, “
Enhanced Boiling Heat Transfer by Submerged Ultrasonic Vibrations
,” Therminic. Sophia Antipolis, Cote d'Azur.
23.
Douglas
,
Z.
,
Boziuk
,
T. R.
,
Smith
,
M. K.
, and
Glezer
,
A.
,
2012
, “
Acoustically Enhanced Boiling Heat Transfer
,”
Phys. Fluids
,
24
, p.
052105
.10.1063/1.4721669
24.
Sitter
,
J. S.
,
Snyder
,
T. J.
,
Chung
,
J. N.
, and
Marston
,
P. L.
,
1998
, “
Acoustic Field Interaction With a Boiling System Under Terrestrial Gravity and Microgravity
,”
J. Acoust. Soc. Am.
,
104
, pp.
2561
–2569.10.1121/1.423910
25.
Sitter
,
S.
,
Snyder
,
T. J.
,
Chung
,
J. N.
, and
Marston
,
P. L.
,
1998
, “
Terrestrial and Microgravity Pool Boiling Heat Transfer From a Wire in an Acoustic Field
,”
Int. J. Heat Mass Transfer
,
41
, pp.
2143
2155
.10.1016/S0017-9310(97)00344-X
26.
Sreenath
,
K.
,
2004
, “
Acoustic Field Assisted Saturated Pool Boiling
,” B. Tech Project Report, IIT Madras, Chennai, India.
27.
Sateesh
,
G.
,
Das
,
S. K.
, and
Balakrishnan
,
A. R.
,
2005
, “
Analysis of Pool Boiling Heat Transfer: Effect of Bubbles Sliding on the Heating Surface
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1543
1553
.10.1016/j.ijheatmasstransfer.2004.10.033
28.
Hari Krishna
,
K.
,
Ganapathy
,
H.
,
Sateesh
,
G.
, and
Das
,
S. K.
,
2011
, “
Pool Boiling Characteristics of Metallic Nanofluids
,”
ASME J. Heat Transfer
,
133
(
11
), p.
111501
.10.1115/1.4002597
29.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(1), pp.
3
8
.
30.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat Transfer Data for Surface Boiling Liquids
,”
Trans. ASME
,
74
, pp.
969
975
.
31.
Kenning
,
D. B. R.
,
1999
, “
What Do We Really Know About Nucleate Boiling
,”
I. Mech. E Conf. Trans. 6th UK National Heat Transfer Conference
, Edinburgh, p.
143
.
32.
Sreenath
,
K.
,
Chatterjee
,
D.
, and
Das
,
S. K.
,
2011
, “
Effect of Acoustic Cavitation on Saturated Nucleate Pool Boiling
,”
WIMRC 3rd International Cavitation Forum 2011
, Warwick, UK.
33.
Prosperetti
,
A.
,
1984
, “
Bubble Phenomenon in Sound Fields: Part One
,”
Ultrasonics
,
69
, pp.
69
77
.10.1016/0041-624X(84)90024-6
34.
Hao
,
Y.
, and
Prosperetti
,
A.
,
1999
, “
The Dynamics of Vapor Bubbles in Acoustic Pressure Fields
,”
Phys. Fluids
,
11
(
8
), pp.
2008
–2019.10.1063/1.870064
35.
Benjamin
,
R. J.
, and
Balakrishnan
,
A. R.
,
1997
, “
Nucleation Site Density in Pool Boiling of Saturated Pure Liquids
,”
Exp. Therm. Fluid Sci.
,
15
, pp.
32
42
.10.1016/S0894-1777(96)00168-9
36.
Lienhard
,
J. H.
,
Dhir
,
V. K.
, and
Riherd
,
D. M.
,
1973
, “
Peak Pool Boiling Heat Flux Measurements on Finite Horizontal Flat Plates
,”
ASME J. Heat Transfer
,
95
, pp.
477
–482.10.1115/1.3450092
37.
Das
,
S. K.
,
2010
,
Fundamentals of Heat and Mass Transfer
,
Alpha Science Intl Ltd.
,
Oxford, UK
, p.
430
.
38.
Malenkov
,
I. G.
,
1971
, “
Detachment Frequency as a Function of Size of Vapour Bubbles
,”
J. Eng. Phys. Thermophys.
,
20
(
6
), pp.
704
708
.10.1007/BF01122590
You do not currently have access to this content.