The thermal conductivity of the earth materials conditions their ability as thermal isolator and its heating capacity, which has a direct impact on the energy consumption of the buildings built with these materials. Two original mathematical models have been developed (models MA-1 and MA-2) to calculate the effective thermal conductivity (λE) of adobes and their results have been compared with other models already known for other materials and with experimental measures done on adobes. The model MA-1 starts from the electric analogy of the transmission of heat in series and in parallel. The model MA-2 is obtained with a regression curve from experimental and literature values of λE in adobes. The λE in adobes has been measured by the thermal needle probe (TNP) procedure using 10 min as the measuring time. For dry adobes, with average environmental conditions of 19 °C and 41% of relative moisture, the values of λE measured were 0.80 W/(m·K) ± 10%. For natural hygroscopic moisture of 1.67% in the same environmental conditions, a λE of 0.90 W/(m·K) ± 10% was measured. Only five of the 18 models analyzed adjust to the values experimentally measured, and their precision depends on the values of λ of the components, which are obtained from the literature. Of the proposed models, the MA-1 fits for the values of the dry and wet material and with some determined values of the literature. The model MA-2 fits in all cases since it does not depend on the values of the literature but on the density of the material and its moisture content.

References

1.
Mosquera
,
P.
,
Marcos
,
F.
,
Cañas Guerrero
,
I.
, and
Cid-Falceto
,
J.
,
2012
, “
Theoretical Determination of Thermal Conductivity With Experimental Verification by the Thermal Needle Probe Method
,”
International Congress: Water, Waste and Energy Management
,
Salamanca, Spain
.
2.
Barea
,
R.
,
2004
, “
Thermal Conductivity Biphasic Ceramics
,” Ph.D. thesis, Faculty of Science, University Autónoma of Madrid, Madrid, Spain.
3.
Decagon-Devices-Inc.
,
2011
, “
KD2-Pro Thermal Properties Analyzer. Operator's Manual
, Version 10.
4.
Heathcote
,
K.
,
2011
, “
The Thermal Performance of Earth Buildings
,”
Informes De La Construccion
,
63
(
523
), pp.
117
126
.10.3989/ic.10.024
5.
Adam
,
E. A.
, and
Jones
,
P. J.
,
1995
, “
Thermophysical Properties of Stabilized Soil Building-Blocks
,”
Build. Environ.
,
30
(
2
), pp.
245
253
.10.1016/0360-1323(94)00041-P
6.
Maldonado
,
L.
,
Castilla
,
F.
, and
Vela
,
F.
,
2001
, “
Performance and Energetic Cost in the Construction of Adobe and Compressed Soil Block Walls
,”
Informes De La Construcción
,
53
(
473
), pp.
27
37
.10.3989/ic.2001.v53.i473.669
7.
Govaer
,
D.
,
1987
, “
Apparent Thermal-Conductivity of a Local Adobe Building Material
,”
Sol. Energy
,
38
(
3
), pp.
165
168
.10.1016/0038-092X(87)90014-4
8.
Bestraten
,
S.
,
Hormias
,
E.
, and
Altemir
,
A.
,
2011
, “
Earthen Construction in the 21st Century
,”
Informes De La Construccion
,
63
(
523
), pp.
5
20
.10.3989/ic.10.046
9.
Binici
,
H.
,
Aksogan
,
O.
,
Bodur
,
M. N.
,
Akca
,
E.
, and
Kapur
,
S.
,
2007
, “
Thermal Isolation and Mechanical Properties of Fibre Reinforced Mud Bricks as Wall Materials
,”
Constr. Build. Mater.
,
21
(
4
), pp.
901
906
.10.1016/j.conbuildmat.2005.11.004
10.
Chel
,
A.
, and
Tiwari
,
G. N.
,
2009
, “
Performance Evaluation and Life Cycle Cost Analysis of Earth to Air Heat Exchanger Integrated With Adobe Building for New Delhi Composite Climate
,”
Energy Build.
,
41
(
1
), pp.
56
66
.10.1016/j.enbuild.2008.07.006
11.
Franco
,
A.
,
2007
, “
An Apparatus for the Routine Measurement of Thermal Conductivity of Materials for Building Application Based on a Transient Hot-Wire Method
,”
Appl. Therm. Eng.
,
27
(
14–15
), pp.
2495
2504
.10.1016/j.applthermaleng.2007.02.008
12.
Goodhew
,
S.
, and
Griffiths
,
R.
,
2004
, “
Analysis of Thermal-Probe Measurements Using an Iterative Method to Give Sample Conductivity and Diffusivity Data
,”
Appl. Energy
,
77
(
2
), pp.
205
223
.10.1016/S0306-2619(03)00122-3
13.
Goodhew
,
S.
, and
Griffiths
,
R.
,
2005
, “
Sustainable Earth Walls to Meet the Building Regulations
,”
Energy Build.
,
37
(
5
), pp.
451
459
.10.1016/j.enbuild.2004.08.005
14.
Meukam
,
P.
,
Jannot
,
Y.
,
Noumowe
,
A.
, and
Kofane
,
T. C.
,
2004
, “
Thermo Physical Characteristics of Economical Building Materials
,”
Constr. Build. Mater.
,
18
(
6
), pp.
437
443
.10.1016/j.conbuildmat.2004.03.010
15.
Parra-Saldivar
,
M. L.
, and
Batty
,
W.
,
2006
, “
Thermal Behaviour of Adobe Constructions
,”
Build. Environ.
,
41
(
12
), pp.
1892
1904
.10.1016/j.buildenv.2005.07.021
16.
Pilkington
,
B.
,
de Wilde
,
P.
,
Goodhew
,
S.
, and
Griffiths
,
R.
,
2006
, “
Development of a Probe for Measuring In-Situ the Thermal Properties of Building Materials
,”
Proceedings of the The 23rd Conference on Passive and Low Energy Architecture
,
Geneva, Switzerland
.
17.
Suleiman
,
B. M.
,
2011
, “
Estimation of U-Value of Traditional North African Houses
,”
Appl. Therm. Eng.
,
31
(
11–12
), pp.
1923
1928
.10.1016/j.applthermaleng.2011.02.038
18.
Laurent
,
J. P.
,
1987
,
Propriétes Hygrothermiques du Matérial Terre
,
Centre Scientifique et Technique du Bâtiment (CSTB)
, Paris, France.
19.
Arnold
,
P. J.
,
1969
, “
Thermal Conductivity of Masonry Materials
,”
J. Inst. Heat. Ventil. Eng.
,
37
, pp.
37101
37108
.
20.
UNE
,
2001
, “
Soil Quality: Determination of Particle Size Distribution of the Mineral Matter of Soils: Sieving and Sedimentation Method
,” Report No. UNE-77314:2001.
21.
Cuevas Rodríguez
,
J.
,
2011
,
Technical Report, Faculty of Science
, Crystallography and Mineralogy Area, University Autónoma of Madrid, Madrid, Spain.
22.
Tavman
,
I. H.
,
1996
, “
Effective Thermal Conductivity of Granular Porous Materials
,”
Int. Commun. Heat Mass Transfer
,
23
(
2
), pp.
169
176
.10.1016/0735-1933(96)00003-6
23.
Vadasz
,
P.
,
2010
, “
Rendering the Transient Hot Wire Experimental Method for Thermal Conductivity Estimation to Two-Phase Systems—Theoretical Leading Order Results
,”
ASME J. Heat Transfer
,
132
(
8
), p.
081601
.10.1115/1.4001314
24.
Carslaw
,
H. S.
and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
,
New York
.
25.
Bartolomé
,
L. M.
,
1987
, “
Transmisión de calor en medios granulares: conductividad térmica efectiva de la piedra de Villamayor
,” Ph.D. thesis, Universidad de Salamanca, Salamanca, Spain.
26.
Gori
,
F.
, and
Corasaniti
,
S.
,
2002
, “
Theoretical Prediction of the Soil Thermal Conductivity at Moderately High Temperatures
,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1001
1008
.10.1115/1.1513573
27.
Miyazaki
,
K.
,
Tanaka
,
S.
, and
Nagai
,
D.
,
2012
, “
Heat Conduction of a Porous Material
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051018
.10.1115/1.4005709
28.
Ayatollahi
,
S.
,
Saber
,
N.
,
Amani
,
M. J.
, and
Bitaab
,
A.
,
2006
, “
Mathematical Investigation of Effective Thermal Conductivity in Fractured Porous Media
,”
J. Porous Media
,
9
(
7
), pp.
625
635
.10.1615/JPorMedia.v9.i7.20
29.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
.10.1115/1.2826001
30.
Francl
,
J.
, and
Kingery
,
W. D.
,
1954
, “
Thermal Conductivity: IX, Experimental Investigation of Effect of Porosity on Thermal Conductivity
,”
J. Am. Ceram. Soc.
,
37
(
2
), pp.
99
107
.10.1111/j.1551-2916.1954.tb20108.x
31.
Ma
,
Y.
,
Yu
,
B.
,
Zhang
,
D.
, and
Zou
,
M.
,
2003
, “
A Self-Similarity Model for Effective Thermal Conductivity of Porous Media
,”
J. Phys. D
,
36
(
17
),
p. 2157
.10.1088/0022-3727/36/17/321
32.
Fischer
,
S. D.
,
2002
, “
Determination of the Thermophysical Properties of Soil Samples
,” Department of Physis, Clark Atlanta University, Atlanta, GA.
33.
Ma
,
Y.
,
Yu
,
B.
,
Zhang
,
D.
, and
Zou
,
M.
,
2004
, “
Fractal Geometry Model for Effective Thermal Conductivity of Three-Phase Porous Media
,”
J. Appl. Phys.
,
95
(
11
), pp.
6426
6434
.10.1063/1.1703820
34.
Hickox, C. E., McVey, D. F., Miller, J. B., Olson, L. O., and Silva, A. J., 1986, "Thermal-Conductivity Measurements of Pacific Illite Sediment," Int. J. Thermophysics,
7
, pp. 755–764.
35.
Midttomme, K., Roaldset, E., and AAgaard, P., 1997, "Thermal Conductivity of Selected Claystones and Mudstones from England," Clay Minerals,
33
, pp. 131–145.
36.
Michot, A., Smith, D. S., Degot, S., and Gault, C., 2008, "Thermal Conductivity and Specific Heat of Kaolinite: Evolution With Thermal Treatment," J. Euro. Ceramic Soc.,
28
, pp. 2639–2644.
37.
Somerton, W. H., 1992, "Thermal Properties and Temperature-Related Behaviour of Rock/Fluid Systems," Elsevier Science Publishers Bound Volume,
37
, pp. ii–vi.
38.
IEEE, 1981, "Guide for Soil Thermal Resistivity Measurements," Report No. IEEE-442-1981 Std.
39.
Oti
,
J. E.
,
Kinuthia
,
J. M.
, and
Bai
,
J.
,
2010
, “
Design Thermal Values for Unfired Clay Bricks
,”
Mater. Des.
,
31
(
1
), pp.
104
112
.10.1016/j.matdes.2009.07.011
40.
CTE-IETCC, 2008, "Catalog Constructive Elements of the Technical Building Code," Eduardo Torroja Institute for Construction Science in Collaboration with CEPCO y AICIA, Madrid, Spain.
You do not currently have access to this content.