The performance of Π shaped conventional and composite thermoelectric devices (TEDs) applied to waste heat recovery by taking the Fourier heat conduction, Joule heating, and the Peltier and Thomson effects in TE materials is investigated using analytical solutions. The TE legs built with semiconductor materials bonded onto a highly conductive interconnector material in a segmented fashion is treated as the composite TED, whereas the legs merely made from semiconductors is treated as the conventional TED. The top and bottom surfaces of TEDs are subjected to convective heat transfer conditions while the remaining surfaces exposed to ambient are kept adiabatic. The effects of contact resistances, convective heat transfer coefficients, and TE leg heights L on TEDs' performance are studied. An increase in electrical and/or thermal contact resistance and a decrease in heat transfer coefficients are resulted in a decrease in power output P0 and conversion efficiency η. Depending on the contact resistances and convective heat transfer loads, the optimum L where a maximum Po occurs is obtained typically in the range of 1–4 mm. For TE leg size greater than optimum L and TED operating under higher convective heat transfer conditions, the composite design exhibited better power output and lower conversion efficiency compared to conventional design. The effects of interconnector lengths and cross-sectional area on the composite TED's characteristics are also investigated. An increase in a length and a decrease in a cross-sectional area of the interconnector decreases the composite TED's performance. However, based on the increase of the interconnector's electrical resistance in relation to the device's total internal resistance, the composite TED exhibited both negligible and significant change behavior in P0.

References

1.
Rowe
,
D. M.
, ed.,
2006
,
Thermoelectrics Handbook Macro to Nano
,
CRC Press
,
Boca Raton, FL
.
2.
Rowe
,
D. M.
, ed.,
2012
,
Thermoelectrics and its Energy Harvesting: Modules, Systems, and Applications in Thermoelectrics
,
CRC Press
,
Boca Raton, FL
.
3.
Sootsman
,
J. R.
,
Chung
,
D. K.
, and
Kanatzidis
,
M. G.
,
2009
, “
New and Old Concepts in Thermoelectric Materials
,”
Angew. Chem. Int. Ed.
,
48
(46), pp.
8616
8639
.10.1002/anie.200900598
4.
Tritt
,
T. M.
,
2011
, “
Thermoelectric Phenomena, Materials, and Applications
,”
Annu. Rev. Mater. Res.
, pp.
433
448
.10.1146/annurev-matsci-062910-100453
5.
Poudel
,
B.
,
Hao
,
Q.
,
Ma
,
Y.
,
Lan
,
Y.
,
Minnich
,
A.
,
Yu
,
B.
,
Yan
,
X.
,
Wang
,
D.
,
Muto
,
A.
,
Vashaee
,
D.
,
Chen
,
X.
,
Liu
,
J.
,
Dresselhaus
,
M. S.
,
Chen
,
G.
, and
Ren
,
Z.
,
2008
, “
High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
,”
Science
,
320
(
5876
), pp.
634
638
.10.1126/science.1156446
6.
Hu
,
L.
,
Gao
,
H.
,
Liu
,
X.
,
Xie
,
H.
,
Shen
,
J.
,
Zhu
,
T.
, and
Zhao
,
X.
,
2012
, “
Enhancement in Thermoelectric Performance of Bismuth Telluride Based Alloys by Multi-Scale Microstructural Effects
,”
J. Mater. Chem.
,
22
(
5
), pp.
16484
16490
.10.1039/c2jm32916f
7.
Hsu
,
K. F.
,
Loo
,
S.
,
Guo
,
F.
,
Chen
,
W.
,
Dyck
,
J. S.
,
Uher
,
C.
,
Hogan
,
T.
,
Polychroniadis
,
E. K.
, and
Kanatzidis
,
M. G.
,
2004
, “
Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials With High Figure of Merit
,”
Science
,
303
(5659), pp.
818
821
.10.1126/science.1092963
8.
Poudeu
,
F. P.
,
DAngelo
,
J.
,
Downey
,
A. D.
,
Short
,
J. L.
,
Hogan
,
T. P.
, and
Kanatzidis
,
M. G.
,
2006
, “
High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-Type Na1–xPbmSbyTem+2
,”
Angew. Chem.
,
118
(23), pp.
3919
3923
.10.1002/ange.200600865
9.
Biswas
,
K.
,
He
,
J.
,
Blum
,
I. D.
,
Wu
,
C.
,
Hogan
,
T. P.
,
Seidman
,
D. N.
,
Dravid
,
V. P.
, and
Kanatzidis
,
M. G.
,
2012
, “
High-Performance Bulk Thermoelectrics With All-Scale Hierarchical Architectures
,”
Nature
,
489
, pp.
414
418
.10.1038/nature11439
10.
Saramat
,
A.
,
Svensson
,
G.
,
Palmqvist
,
A. E.
,
Stiewe
,
C.
, and
Mueller
,
E.
,
2006
, “
Large Thermoelectric Figure of Merit at High Temperature in Czochralskigrown Clathrate Ba8Ga16Ge30
,”
J. Appl. Phys.
,
99
(2), p.
023708
.10.1063/1.2163979
11.
Caillat
,
T.
,
Fleurial
,
J. P.
,
Snyder
,
G. J.
,
Zoltan
,
A.
,
Zoltan
,
D.
, and
Borshchevsky
,
A.
,
1999
, “
Development of a High Efficiency Thermoelectric Unicouple for Power Generation Applications
,”
Proceedings of the XVllI International Conference on Thermoelectrics
, Baltimore, MD.
12.
El-Genk
,
M. S.
,
Saber
,
H. H.
, and
Caillat
,
T.
,
2003
, “
Efficient Segmented Thermoelectric Unicouples for Space Power Applications
,”
Energy Convers. Manage.
,
44
(11), pp.
1755
1772
.10.1016/S0196-8904(02)00217-0
13.
Kaibe
,
H.
,
Aoyama
,
I.
,
Mukoujima
,
M.
,
Kanda
,
T.
,
Fujimoto
,
S.
,
Kurosawa
,
T.
,
Ishimabushi
,
H.
,
Ishida
,
K.
,
Rauscher
,
L.
,
Hata
,
Y.
, and
Seijirou
,
2005
, “
Development of Thermoelectric Generating Stacked Modules Aiming for 15% of Conversion Efficiency
,”
International Conference on Thermoelectrics
, IEEE, pp.
227
232
.
14.
Crane
,
D.
,
Koripella
,
C.
, and
Jovovic
,
V.
,
2012
, “
Validating Steady-State and Transient Modeling Tools for High-Powerdensity Thermoelectric Generators
,”
J. Electron. Mater.
,
41
(
6
), pp.
1524
1534
.10.1007/s11664-012-1955-3
15.
Min
,
G.
, and
Rowe
,
D. M.
,
1992
, “
Optimisation of Thermoelectric Module Geometry for Waste Heat Electric Power Generation
,”
J. Power Sources
,
38
(3), pp.
253
259
.10.1016/0378-7753(92)80114-Q
16.
Hodes
,
M.
,
2010
, “
Optimal Pellet Geometries for Thermoelectric Power Generation
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
2
), pp.
307
318
.10.1109/TCAPT.2009.2039934
17.
Sahin
,
A. Z.
, and
Yilbas
,
B. S.
,
2013
, “
The Thermoelement as Thermoelectric Power Generator: Effect of Leg Geometry on the Efficiency and Power Generation
,”
Energy Convers. Manage.
,
65
, pp.
26
32
.10.1016/j.enconman.2012.07.020
18.
Gou
,
X.
,
Xiao
,
H.
, and
Yang
,
S.
,
2010
, “
Modeling, Experimental Study and Optimization on Low-Temperature Waste Heat Thermoelectric Generator System
,”
Appl. Energy
,
87
, pp.
3131
3136
.10.1016/j.apenergy.2010.02.013
19.
Chen
,
L.
,
Meng
,
F.
, and
Sun
,
F.
,
2013
, “
Internal and External Simultaneous Optimization of an Irreversible Thermoelectric Generator for Maximum Power Output
,”
Int. J. Low-Carbon Technol.
,
8
(3), pp.
188
196
.10.1093/ijlct/cts014
20.
Yazawa
,
K.
, and
Shakouri
,
A.
,
2012
, “
Cost-Effective Waste Heat Recovery Using Thermoelectric Systems
,”
J. Mater. Res.
,
27
(
9
), pp.
1211
1217
.10.1557/jmr.2012.79
21.
Reddy
,
B. V. K.
,
Barry
,
M.
,
Li
,
J.
, and
Chyu
,
M. K.
,
2013
, “
Thermoelectric Performance of Novel Composite and Integrated Devices Applied to Waste Heat Recovery
,”
ASME J. Heat Transfer
,
135
(
3
), p.
031706
.10.1115/1.4007892
22.
Reddy
,
B. V. K.
,
Barry
,
M.
,
Li
,
J.
, and
Chyu
,
M. K.
,
2013
, “
Mathematical Modeling and Numerical Characterisation of Composite Thermoelectric Devices
,”
Int. J. Therm. Sci.
,
67
, pp.
53
63
.10.1016/j.ijthermalsci.2012.11.004
23.
Angrist
,
S. W.
,
1982
,
Direct Energy Conversion
, 4 ed.,
Allyn and Bacon Inc.
,
Boston, MA
.
You do not currently have access to this content.