This paper presents an analytical investigation of constant property, steady, fully developed, laminar thermal transport in a parallel-plate channel comprised of metal superhydrophobic (SH) walls. The superhydrophobic walls considered here exhibit microribs and cavities aligned in the streamwise direction. The cavities are assumed to be nonwetting and contain air, such that the Cassie–Baxter state is the interfacial state considered. The scenario considered is that of constant heat flux through the rib surfaces with negligible thermal transport through the air cavity interface. Closed form solutions for the local Nusselt number and local wall temperature are presented and are in the form of infinite series expansions. The analysis show the relative size of the cavity regions compared to the total rib and cavity width (cavity fraction) exercises significant influence on the aggregate thermal transport behavior. Further, the relative size of the rib and cavity module width compared to the channel hydraulic diameter (relative module width) also influences the Nusselt number. The spatially varying Nusselt number and wall temperature are presented as a function of the cavity fraction and the relative module width over the ranges 0–0.99 and 0.01–1.0, respectively. From these results, the rib/cavity module averaged Nusselt number was determined as a function of the governing parameters. The results reveal that increases in either the cavity fraction or relative module width lead to decreases in the average Nusselt number and results are presented over a wide range of conditions from which the average Nusselt number can be determined for heat transfer analysis. Further, analogous to the hydrodynamic slip length, a temperature jump length describing the apparent temperature jump at the wall is determined in terms of the cavity fraction. Remarkably, it is nearly identical to the hydrodynamic slip length for the scenario considered here and allows straightforward determination of the average Nusselt number for any cavity fraction and relative rib/cavity module width.

References

1.
Chen
,
W.
,
Fadeev
,
A. Y.
,
Hsieh
,
M. C.
,
Oner
,
D.
,
Youngblood
,
J.
, and
McCarthy
,
J. T.
,
1999
, “
Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples
,”
Langmuir
,
15
, p.
3395
.10.1021/la990074s
2.
Sinha Ray
,
S.
,
Chando
,
P.
, and
Yarin
,
A. L.
,
2009
, “
Enhanced Release of Liquid From Carbon Nanotubes Due to Entrainment by an Air Layer
,”
Nanotechnology
,
20
, p.
095711
.10.1088/0957-4484/20/9/095711
3.
Yarin
,
A. L.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing…
,”
Annu. Rev. Fluid Mech.
,
38
, p.
159
.10.1146/annurev.fluid.38.050304.092144
4.
Bico
,
J.
,
Thiele
,
U.
, and
Quere
,
D.
,
2002
, “
Wetting of Textured Surfaces
,”
Colloids Surf.
,
206
, p.
41
.10.1016/S0927-7757(02)00061-4
5.
Bartolo
,
D.
,
Bouamrirene
,
F.
,
Verneuil
,
É.
,
Buguin
,
A.
,
Silberzan
,
P.
, and
Moulinet
,
S.
,
2006
, “
Bouncing or Sticky Droplets: Impalement Transitions on Superhydrophobic Micropatterned Surfaces
,”
Europhys. Lett.
,
74
, p.
299
.10.1209/epl/i2005-10522-3
6.
Reyssat
,
M.
,
Pépin
,
A.
,
Marty
,
F.
,
Chen
,
Y.
, and
Quéré
,
D.
,
2006
, “
Bouncing Transitions on Mictrotextured Materials
,”
Europhys. Lett.
,
74
, p.
306
.10.1209/epl/i2005-10523-2
7.
Wang
,
Z.
,
Lopez
,
C.
,
Hirsa
,
A.
, and
Koratkar
,
N.
,
2007
, “
Impact Dynamics and Rebound of Water Droplets on Superhydrophobic Carbon Nanotube Arrays
,”
Appl. Phys. Lett.
,
91
, p.
023105
.10.1063/1.2756296
8.
Pearson
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2012
, “
Droplet Impact Dynamics for Two Liquids Impinging on Anisotropic Superhydrophobic Surfaces
,”
Exp. Fluids
,
53
, p.
603
.10.1007/s00348-012-1320-6
9.
Maynes
,
D.
,
Johnson
,
M.
, and
Webb
,
B. W.
,
2011
, “
Free-Surface Liquid Jet Impingement on Rib Patterned Superhydrophobic Surfaces
,”
Phys. Fluids
,
23
, p.
052104
.10.1063/1.3593460
10.
Kibar
,
A.
,
Karabay
,
H.
,
Yigit
,
K. S.
,
Ucar
,
O. U.
, and
Erbil
,
H. Y.
,
2010
, “
Experimental Investigation of Inclined Liquid Water Jet Flow Onto Vertically Located Superhydrophobic Surfaces
,”
Exp. Fluids
,
49
, p.
1135
.10.1007/s00348-010-0864-6
11.
Lauga
,
E.
, and
Stone
,
H.
,
2003
, “
Effective Slip in Pressure-Driven Stokes flow
,”
J. Fluid Mech.
,
489
, p.
55
.10.1017/S0022112003004695
12.
Ou
,
J.
, and
Rothstein
,
J. P.
,
2005
, “
Direct Velocity Measurements of the Flow Past Drag-Reducing Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
17
, p.
103606
.10.1063/1.2109867
13.
Maynes
,
D.
,
Jeffs
,
K.
,
Woolford
,
B.
, and
Webb
,
B. W.
,
2007
, “
Laminar Flow in a Microchannel With Hydrophobic Surface Patterned Micro-Ribs Oriented Parallel to the Flow Direction
,”
Phys. Fluids
,
19
, p.
093606
.10.1063/1.2772880
14.
Davies
,
J.
,
Maynes
,
D.
,
Webb
,
B. W.
, and
Woolford
,
B.
,
2006
, “
Laminar Flow in a Microchannel With Super-Hydrophobic Walls Exhibiting Transverse Ribs
,”
Phys. Fluids
,
18
, p.
087110
.10.1063/1.2336453
15.
Ybert
,
C.
,
Barentin
,
C.
,
Cottin-Bizonne
,
C.
,
Joseph
,
P.
, and
Bocquet
,
L.
,
2007
, “
Achieving Large Slip With Superhydrophobic Surfaces: Scaling Laws for Generic Geometries
,”
Phys. Fluids
19
, p.
123601
.10.1063/1.2815730
16.
Lee
,
C.
,
Choi
,
C. H.
, and
Kim
,
C. J.
,
2008
, “
Structured Surfaces for Giant Liquid Slip
,”
Phys. Rev. Lett.
101
, p.
64501
.10.1103/PhysRevLett.101.064501
17.
Woolford
,
B.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2009
, “
Liquid Flow Through Microchannels With Grooved Walls Under Wetting and Superhydrophobic Conditions
,”
Microfluid. Nanofluid.
,
7
, p.
121
.10.1007/s10404-008-0365-6
18.
Martell
,
M. B.
,
Perot
,
J. B.
, and
Rothstein
,
J. P.
,
2009
, “
Direct Numerical Simulations of Turbulent Flows Over Superhydrohobic Surfaces
,”
J. Fluid Mech.
,
620
, p.
31
.10.1017/S0022112008004916
19.
Woolford
,
B.
,
Prince
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2009
, “
Particle Image Velocimetry Characterization of Turbulent Channel Flow With Rib Patterned Superhydrophobic Walls
,”
Phys. Fluids
21
, p.
085106
.10.1063/1.3213607
20.
Daniello
,
R. J.
,
Waterhouse
,
N. E.
, and
Rothstein
,
J. P.
,
2009
, “
Drag Reduction in Turbulent Flows Over Superhydrophobic Surfaces
,”
Phys. Fluids
,
21
, p.
085103
.10.1063/1.3207885
21.
Jeffs
,
K.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2010
, “
Prediction of Turbulent Channel Flow With Superhydrophobic Walls Consisting of Micro-Ribs and Cavities Oriented Parallel to the Flow Direction
,”
Int. J. Heat Mass Transfer
,
53
, p.
786
.10.1016/j.ijheatmasstransfer.2009.09.033
22.
Teo
,
C. J.
, and
Khoo
,
B. C.
,
2010
, “
Flow Past Superhydrophobic Surfaces Containing Longitudinal Grooves: Effects of Interface Curvature
,”
Microfluid. Nanofluid.
,
9
, p.
499
.10.1007/s10404-010-0566-7
23.
Maynes
,
D.
,
Webb
,
B. W.
, and
Davies
,
J.
,
2008
, “
Thermal Transport in a Microchannel Exhibiting Ultrahydrophobic Micro-Ribs Maintained at Constant Temperature
,”
J. Heat Transfer
,
130
, p.
022402
.10.1115/1.2789715
24.
Liu
,
Z.
,
Guo
,
Y.
,
Want
,
J.
, and
Cheng
,
S.
,
2008
, “
Frost Formation of a Super-Hydrophobic Surface Under Natural Convection Conditions
,”
Int. J. Heat Mass Transfer
,
51
, p.
5975
.10.1016/j.ijheatmasstransfer.2008.03.026
25.
Varanasi
,
K. K.
,
Deng
,
T.
,
Smith
,
J. D.
,
Hsu
,
M.
, and
Bhate
,
N.
,
2010
, “
Frost Formation and Ice Adhesion on Superhydrophobic Surfaces
,”
Appl. Phys. Lett.
,
97
, p.
234102
.10.1063/1.3524513
26.
McHale
,
G.
,
Aquil
,
S.
,
Shirtcliffe
,
J.
,
Newton
,
M. I.
, and
Erbil
,
H. Y.
,
2005
, “
Analysis of Droplet Evaporation on a Superhydrophobic Surface
,”
Langmuir
,
21
, p.
11053
.10.1021/la0518795
27.
Maynes
,
D.
,
Tulett
,
N.
,
Vanderhoff
,
J.
, and
Webb
,
B. W.
,
2011
, “
Influence of Superhydrophobic Walls on the Thermal Transport to Liquid Droplets
,” Proceedings of ASME 2011 IMECE Conference, Denver, Colorado.
28.
Tam
,
D.
,
vonArmin
, V
.
,
McKinley
,
G. H.
, and
Hosoi
,
A. E.
,
2009
, “
Marangoni Convection in Droplets on Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
624
, p.
101
.10.1017/S0022112008005053
29.
Enright
,
R.
,
Eason
,
C.
,
Dalton
,
T.
,
Hodes
,
M.
,
Salamon
,
T.
,
Kolodner
,
P.
, and
Krupenkin
,
T.
,
2006
, “
Friction Factors and Nusselt Numbers in Microchannels With Superhydrophobic Walls
,” Proceedings of the Fourth International Conference on Nanochannels, Microchannels, and Minichannels, ASME, Limerick Ireland, Paper No. ICNMM2006-96134.
30.
Maynes
D.
,
Webb
,
B. W.
,
Crockett
,
J.
, and
Soloviev
V
.
,
2013
, “
Analysis of Laminar Slip-Flow Thermal Transport in Microchannels With Transverse Rib and Cavity Structured Superhydrophobic Walls at Constant Heat Flux
,”
J. Heat Transfer
,
135
, p.
021701
.10.1115/1.4007429
31.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw-Hill
,
New York
.
32.
Enright
,
R.
,
Hodes
,
M.
,
Salamon
,
T.
, and
Muzychka
,
Y.
,
2013
, “
Isoflux Nusselt Number and Slip Length Formulae for Superhydrophobic Microchannels
,”
J. Heat Transfer
(in press).
33.
Panton
,
R. L.
,
2005
,
Incompressible Flow
, 3rd ed.,
Wiley
,
New York
.
34.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
,
New York
.
You do not currently have access to this content.