The dissimilarity between the Reynolds stresses and the heat fluxes in perturbed turbulent channel and plane Couette flows was studied using direct numerical simulation. The results demonstrate that the majority of the dissimilarity was due to the difference between the wall-normal fluxes, while the difference between the streamwise fluxes was lower. The main causes for the dissimilarity were the production terms, followed by the velocity-pressure interaction terms. Further insights into the importance of the velocity-pressure interaction in the origin of the dissimilarity are provided using two-point correlation. Furthermore, an octant conditional averaged dataset reveals that not only the wall-normal heat flux but also the streamwise heat flux is strongly related to the wall-normal gradient of the mean temperature. A simple Reynolds-averaged Navier–Stokes (RANS) heat flux model is proposed as a function of the Reynolds stresses. A comparison of the direct numerical simulation data with an “a priori” prediction suggests that this simple model performs reasonably well.

References

1.
Launder
,
B. E.
,
1978
, “
Heat and Mass Transport
,”
Turbulence Topics in Applied Physics
, Vol.
12
, 2nd ed.,
P.
Bradshaw
, ed.,
Springer-Verlag
,
New York
, pp.
231
287
.
2.
Daly
,
B. J.
, and
Harlow
,
F. H.
,
1970
, “
Transport Equations in Turbulence
,”
Phys. Fluids
,
13
(
11
), pp.
2634
2639
.10.1063/1.1692845
3.
Kim
,
J.
, and
Moin
,
P.
,
1989
, “
Transport of Passive Scalar in a Turbulent Channel Flow
,”
Turbulent Shear Flow
, Vol.
6
,
Springer-Verlag
,
Berlin
, pp.
86
96
.
4.
Roger
,
M. M.
,
Mansur
,
N. N.
, and
Reynolds
,
W. C.
,
1989
, “
An Algebraic Model for the Turbulent Flux of a Passive Scalar
,”
J. Fluid Mech.
,
203
, pp.
77
101
.10.1017/S0022112089001382
5.
Abe
,
K.
, and
Suga
,
K.
,
2000
, “
Towards the Development of a Reynolds-Averaged Algebraic Turbulent Scalar-Flux Model
,”
Int. J. Heat Fluid Flow
,
22
, pp.
19
29
.10.1016/S0142-727X(00)00062-X
6.
Kestin
,
J.
, and
Richardson
,
P. D.
,
1963
, “
Heat Transfer Across Turbulent Incompressible Boundary Layers
,”
Int. J. Heat Mass Transfer
,
6
, pp.
147
189
.10.1016/0017-9310(63)90035-8
7.
Fulachier
,
L.
, and
Dumas
,
R.
,
1976
, “
Spectral Analogy Between Temperature and Velocity Fluctuations in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
77
, pp.
257
277
.10.1017/S0022112076002103
8.
Antonia
,
R. A.
,
Krishnamoorthy
,
L. V.
, and
Fulachier
,
L.
,
1987
, “
Correlation Between the Longitudinal Velocity Fluctuation and Temperature Fluctuation in the Near-Wall Region of a Turbulent Boundary Layer
,”
Int. J. Heat Mass Transfer
,
31
(
4
), pp.
723
730
.10.1016/0017-9310(88)90130-5
9.
Suzuki
,
H.
,
Suzuki
,
K.
, and
Sato
,
T.
,
1988
, “
Dissimilarity Between Heat and Mass Transfer in a Turbulent Boundary Layer Disturbed by a Cylinder
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
259
265
.10.1016/0017-9310(88)90008-7
10.
Kong
,
H.
,
Choi
,
H.
, and
Lee
,
J. S.
,
2001
, “
Dissimilarity Between the Velocity and Temperature Fields in a Perturbed Turbulent Thermal Boundary Layer
,”
Phys. Fluids
,
13
(
5
), pp.
1466
1479
.10.1063/1.1358874
11.
Pasinato
,
H. D.
,
2011
, “
Velocity and Temperature Dissimilarity in Fully Developed Turbulent Channel and Plane Couette Flows
,”
Int. J. Heat Fluid Flow
,
32
, pp.
11
25
.10.1016/j.ijheatfluidflow.2010.10.003
12.
Pasinato
,
H. D.
,
2007
, “
Velocity and Temperature Natural Dissimilarity in a Turbulent Channel Flow
,”
Mecánica Computacional
, Vol.
26
,
S.
Elaskar
,
E.
Pilotta
, and
G.
Torres
, eds., pp.
3644
3663
.
13.
Pasinato
,
H. D.
,
2008
, “
Turbulent Scalar Transport Mechanism and Velocity-Temperature Natural Dissimilarity in a Turbulent Plane Couette Flow
,”
Mecánica Computacional
, Vol.
27
,
A.
Cardona
,
M.
Storti
, and
C.
Zuppa
, eds., pp.
1619
1636
.
14.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
, pp.
59
98
.10.1016/0045-7825(79)90034-3
15.
Hinze
,
J.
,
1975
,
Turbulence
,
McGraw Hill
,
New York
.
16.
Kim
,
H. T.
,
Kline
,
S. J.
, and
Reynolds
,
W. C.
,
1971
, “
The Production of Turbulence Near a Smooth Wall in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
56
, pp.
133
159
.10.1017/S0022112071002490
17.
Wallace
,
J. M.
,
Eckelmann
,
H.
, and
Brodkey
,
R. S.
,
1972
, “
The Wall Region in Turbulent Shear Flow
,”
J. Fluid Mech.
,
54
, pp.
39
48
.10.1017/S0022112072000515
18.
Rossi
,
R.
, and
Iaccarino
,
G.
, 2009, “
Numerical Simulation of Scalar Dispersion Downstream of a Square Obstacle Using Gradient-Transport Type Models
,”
Atmos. Environ.
,
43
(
16
), pp. 2518–2531.10.1016/j.atmosenv.2009.02.044
19.
Pasinato
,
H. D.
,
2012
, “
Wall-Layer Turbulent Heat Transfer Modeling for Perturbed Flows
,”
Mecánica Computacional
, Vol.
31
,
A.
Cardona
,
P.
Khoan
,
R.
Quinteros
, and
M.
Storti
, eds., pp.
2059
2073
.
You do not currently have access to this content.