Of interest is the accurate measurement of the enhanced thermal conductivity of certain nanofluids free from the impact of natural convection. Owing to its simplicity, wide range of applicability and short response time, the transient hot-wire method (THWM) is frequently used to measure the thermal conductivity of fluids. In order to gain a sufficiently high accuracy, special care should be taken to assure that each measurement is not affected by initial heat supply delay, natural convection, and signal noise. In this study, it was found that there is a temperature limit when using THWM due to the incipience of natural convection. The results imply that the temperature-dependence of the thermal conductivity enhancement observed by other researchers might be misleading when ignoring the impact of natural convection; hence, it could not be used as supporting evidence of the effectiveness of micromixing due to Brownian motion. Thus, it is recommended that researchers report how they keep the impact of the natural convection negligible and check the integrity of their measurements in the future researches.

References

1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Developments Applications of Non-Newtonian Flows, D. A. Siginer, and H. P. Wang, eds., FED/MD, ASME, New York, Vol. 231/66, pp. 99–105.
2.
Keblinski
,
P.
,
Philpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
, pp.
855
863
.10.1016/S0017-9310(01)00175-2
3.
Kleinstreuer
,
C.
, and
Feng
,
Y.
,
2011
, “
Experimental and Theoretical Studies on Nanofluid Thermal Conductivity Enhancement: A Review
,”
Nanoscale Res. Lett.
,
6
, p.
229
.10.1186/1556-276X-6-229
4.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2005
, “
Impact Analysis of Nanoparticle Motion Mechanisms on the Thermal Conductivity of Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
32
, pp.
1111
1118
.10.1016/j.icheatmasstransfer.2005.05.014
5.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
,
2006
, “
Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions
,”
Nano Lett.
,
6
, pp.
1529
1534
.10.1021/nl060992s
6.
Kleinstreuer
,
C.
, and
Li
,
J.
,
2008
, “
Discussion: ‘Effects of Various Parameters on Nanofluid Thermal Conductivity’ (Jang, S. P., and Choi, S. D. S., 2007, ASME J. Heat Transfer, 129, pp. 617–623)
,”
ASME J. Heat Trans.
,
130
(2), p.
025501
.10.1115/1.2812307
7.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2007
, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Trans.
,
129
(5), pp.
617
623
.10.1115/1.2712475
8.
Patel
,
H. E.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
An Experimental Investigation Into the Thermal Conductivity Enhancement in Oxide and Metallic Nanofluids
,”
J. Nanopart. Res.
,
12
(
3
), pp.
1015
1031
.10.1007/s11051-009-9658-2
9.
Kleinstreuer
,
C.
, and
Feng
,
Y.
,
2012
, “
Thermal Nanofluid Property Model With Application to Nanofluid Flow in a Parallel-Disk System—Part I: A New Thermal Conductivity Model for Nanofluid Flow
,”
ASME J. Heat Trans.
,
134
(5), p.
051002
.10.1115/1.4005632
10.
Paul
,
G.
,
Chopkar
,
M.
,
Manna
,
I.
,
Das
,
P. K.
,
2010
, “
Techniques for Measuring the Thermal Conductivity of Nanofluids: A Review
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
1913
1924
.10.1016/j.rser.2010.03.017
11.
Assael
,
M.
,
Antoniadis
,
K.
, and
Wakeham
,
W.
,
2010
, “
Historical Evolution of the Transient Hot-Wire Technique
,”
Int. J. Thermophys.
,
31
, pp.
1051
1072
.10.1007/s10765-010-0814-9
12.
Gross
,
U.
,
Song
,
Y.
, and
Hahne
,
E.
,
1992
, “
Thermal Conductivity of the New Refrigerants R134a, R152a, and R123 Measured by the Transient Hot-Wire Method
,”
Int. J. Thermophys.
,
13
, pp.
957
983
.10.1007/BF01141209
13.
Hong
,
S. W.
,
Kang
,
Y. T.
,
Kleinstreuer
,
C.
, and
Koo
,
J.
,
2011
, “
Impact Analysis of Natural Convection on Thermal Conductivity Measurements of Nanofluids Using the Transient Hot-Wire Method
,”
Int. J. Heat Mass Transfer
,
54
, pp.
3448
3456
.10.1016/j.ijheatmasstransfer.2011.03.041
14.
Vadasz
,
J. J.
,
Govender
,
S.
, and
Vadasz
,
P.
,
2005
, “
Heat Transfer Enhancement in Nano-Fluids Suspensions: Possible Mechanisms and Explanations
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2673
2683
.10.1016/j.ijheatmasstransfer.2005.01.023
15.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
,
2003
, “
Natural Convection of Nano-Fluids
,”
Heat Mass Transfer
,
39
, pp.
775
784
.10.1007/s00231-002-0382-z
16.
Li
,
C. H.
, and
Peterson
,
G. P.
,
2010
, “
Experimental Studies of Natural Convection Heat Transfer of Al2O3/DI Water Nanoparticle Suspensions (Nanofluids)
,”
Adv. Mech Eng.
,
2010
, p.
742739
.10.1155/2010/742739
17.
Ni
,
R.
,
Zhou
,
S. Q.
, and
Xia
,
K. Q.
,
2011
, “
An Experimental Investigation of Turbulent Thermal Convection in Water-Based Alumina Nanofluid
,”
Phys. Fluids
,
23
, p.
022005
.10.1063/1.3553281
18.
Donzelli
,
G.
,
Cerbino
,
R.
, and
Vailati
,
A.
,
2009
, “
Bistable Heat Transfer in a Nanofluid
,”
Phys. Rev. Lett.
,
102
, p.
104503
.10.1103/PhysRevLett.102.104503
19.
Corcione
,
M.
,
2011
, “
Rayleigh-Bénard Convection Heat Transfer in Nanoparticle Suspensions
,”
Int. J. Heat Fluid Flow
,
32
, pp.
65
77
.10.1016/j.ijheatfluidflow.2010.08.004
20.
Hwang
,
K. S.
,
Lee
,
J.
, and
Jang
,
S. P.
,
2007
, “
Buoyancy-Driven Heat Transfer of Water-Based Al2O3 Nanofluids in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4003
4010
.10.1016/j.ijheatmasstransfer.2007.01.037
21.
Kim
,
J.
,
Kang
,
Y. T.
, and
Choi
,
C. K.
,
2004
, “
Analysis of Convective Instability and Heat Transfer Characteristics of Nanofluids
,”
Phys. Fluids
,
16
, pp.
2395
2401
.10.1063/1.1739247
22.
Tzou
,
D. Y.
,
2008
, “
Thermal Instability of Nanofluids in Natural Convection
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2967
2979
.10.1016/j.ijheatmasstransfer.2007.09.014
23.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2004
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
, pp.
4316
4318
.10.1063/1.1756684
24.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME. J. Heat Trans.
,
125
(4), pp.
567
574
.10.1115/1.1571080
25.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2005
, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
,
94
, p.
025901
.10.1103/PhysRevLett.94.025901
26.
Chon
,
C. H.
, and
Kihm
,
K. D.
,
2005
, “
Thermal Conductivity Enhancement of Nanofluids by Brownian Motion
,”
ASME J. Heat Trans.
,
127
(8), p.
810
.10.1115/1.2033316
27.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
, pp.
560
568
.10.1016/j.ijthermalsci.2007.05.004
28.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
,
2009
, “
New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
,
48
, pp.
363
371
.10.1016/j.ijthermalsci.2008.03.009
29.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2009
, “
Measurement of Temperature-Dependent Thermal Conductivity and Viscosity of TiO2-Water Nanofluids
,”
Exp. Therm. Fluid Sci.
,
33
, pp.
706
714
.10.1016/j.expthermflusci.2009.01.005
30.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4675
4682
.10.1016/j.ijheatmasstransfer.2009.06.027
31.
Teng
,
T. P.
,
Hung
,
Y. H.
,
Teng
,
T. C.
,
Mo
,
H. E.
, and
Hsu
,
H. G.
,
2010
, “
The Effect of Alumina/Water Nanofluid Particle Size on Thermal Conductivity
,”
Appl. Therm. Eng.
,
30
, pp.
2213
2218
.10.1016/j.applthermaleng.2010.05.036
32.
Turgut
,
A.
,
Tavman
,
I.
,
Chirtoc
,
M.
,
Schuchmann
,
H.
,
Sauter
,
C.
, and
Tavman
,
S.
,
2009
, “
Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids
,”
Int. J. Thermophys.
,
30
, pp.
1213
1226
.10.1007/s10765-009-0594-2
33.
Shima
,
P.
,
Philip
,
J.
, and
Raj
,
B.
,
2010
, “
Synthesis of Aqueous and Nonaqueous Iron Oxide Nanofluids and Study of Temperature Dependence on Thermal Conductivity and Viscosity
,”
J. Phys. Chem. C
,
114
, pp.
18825
18833
.10.1021/jp107447q
34.
Lee
,
W. H.
,
Rhee
,
C. K.
,
Koo
,
J.
,
Lee
,
J.
,
Jang
,
S. P.
,
Choi
,
S. U. S.
,
Lee
,
K. W.
,
Bae
,
H. Y.
,
Lee
,
G. J.
, Kim, C. K., Hong, S. W., Kwon, Y., Kim, D., Kim, S. H., Hwang, K. S., Kim, H. J., Ha, H. J., Lee, S. H., Choi, C. J., and Lee, J. H.,
2011
, “
Round-Robin Test on Thermal Conductivity Measurement of ZnO Nanofluids and Comparison of Experimental Results With Theoretical Bounds
,”
Nanoscale Res. Lett.
,
6
, p.
258
.10.1186/1556-276X-6-258
35.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat on Solids
,
Oxford University Press
,
New York
, pp.
188
213
.
36.
Roder
,
H. M.
,
Perkins
,
R. A.
,
Laesecke
,
A.
, and
de Castro
,
C. A. N.
,
2000
, “
Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System
,”
J. Res. Natl. Inst. Stand. Technol.
,
105
, pp.
221
253
.10.6028/jres.105.028
37.
Kostic
,
M.
, and
Simham
,
K. C.
,
2009
, “
Computerized, Transient Hot-Wire Thermal Conductivity (HWTC) Apparatus for Nanofluids
,”
Proceedings of the 6th WSEAS International Conference on Heat and Mass Transfer (HMT’09)
.
38.
Codreanu
,
C.
,
Codreanu
,
N.
, and
Obreja
,
V.
,
2010
, “
Experimental Set-Up for the Measurement of the Thermal Conductivity of Liquids
,”
Rom. J. Inf. Sci. Technol.
,
10
, pp.
215
231
.
39.
Lee
,
S.
, and
Kang
,
K.
,
2007
, “
Validation Test for Transient Hot-wire Method to Evaluate the Temperature Dependence of Nanofluids
,”
Trans. Korean Soc. Mech. Eng., B
,
31
, pp.
341
348
(in Korean).10.3795/KSME-B.2007.31.4.341
40.
Berendsen
,
H. J. C.
,
2011
,
A Student's Guide to Data and Error Analysis
,
Cambridge University Press
,
Cambridge, UK
.
41.
Morkoç
,
H.
, and
Özgür
,
Ü.
,
2009
,
Zinc Oxide: Fundamentals, Materials and Device Technology
,
Wiley-VCH
,
Weinheim, Germany
.
You do not currently have access to this content.