This study discusses the simulation of flow boiling in a microchannel and numerically predicts the effects of channel geometry variation along the flow direction. Experimental studies by Pan and collaborators and suggestions from Mukherjee and Kandlikar have generated interest in expanding the cross section of a microchannel to improve boiling heat transfer. The motivation for this geometry change is discussed, constraints and model selection are reviewed, and Revellin and Thome's critical heat flux criterion is used to bound the simulation, via matlab, of separated flow in a heated channel. The multiphase convective heat-transfer coefficient is extracted from these results using Qu and Mudawar's relationship and is compared to reported experimental values. Expanding channel geometry permits higher heat rates before reaching critical heat flux.

References

1.
Zhang
,
T.
,
Tong
,
T.
,
Chang
,
J.-Y.
,
Peles
,
Y.
,
Prasher
,
R.
,
Jensen
,
M. K.
,
Wen
,
J. T.
, and
Phelan
,
P. E.
,
2009
, “
Ledinegg Instability in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5661
5674
.10.1016/j.ijheatmasstransfer.2009.09.008
2.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
10
), pp.
2045
2059
.10.1016/j.ijheatmasstransfer.2003.12.006
3.
Kandlikar
,
S.
,
2004
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
8
16
.10.1115/1.1643090
4.
Koşar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2006
, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
251
260
.10.1115/1.2150837
5.
Odom
,
B. A.
,
Miner
,
M. J.
,
Ortiz
,
C. A.
,
Sherbeck
,
J. A.
,
Prasher
,
R. S.
, and
Phelan
,
P. E.
,
2012
, “
Microchannel Two-Phase Flow Oscillation Control With an Adjustable Inlet Orifice
,”
ASME J. Heat Transfer
, 134(12), p. 122901.10.1115/1.4007202
6.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
,
130
(
7
), p.
072402
.10.1115/1.2908431
7.
Hwang
,
J.
,
Tseng
,
F.
, and
Pan
,
C.
,
2005
, “
Ethanol–CO2 Two-Phase Flow in Diverging and Converging Microchannels
,”
Int. J. Multiphase Flow
,
31
(
5
), pp.
548
570
.10.1016/j.ijmultiphaseflow.2005.01.011
8.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2009
, “
The Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
21
), pp.
5204
5212
.10.1016/j.ijheatmasstransfer.2009.04.025
9.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2005
, “
Numerical Study of the Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
International Conference on Microchannels and Minichannels,
ASME
, Paper No. ICMM2005-75143.10.1115/ICMM2005-75143
10.
Lu
,
C. T.
, and
Pan
,
C.
,
2008
, “
Stabilization of Flow Boiling in Microchannel Heat Sinks With a Diverging Cross-Section Design
,”
J. Micromech. Microeng.
,
18
(
7
), p.
075035
.10.1088/0960-1317/18/7/075035
11.
Lu
,
C. T.
, and
Pan
,
C.
,
2011
, “
Convective Boiling in a Parallel Microchannel Heat Sink With a Diverging Cross Section and Artificial Nucleation Sites
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
810
815
.10.1016/j.expthermflusci.2010.08.018
12.
Lee
,
P. C.
, and
Pan
,
C.
,
2007
, “
Boiling Heat Transfer and Two-Phase Flow of Water in a Single Shallow Microchannel With a Uniform or Diverging Cross Section
,”
J. Micromech. Microeng.
,
18
(
2
), p.
025005
.10.1088/0960-1317/18/2/025005
13.
Lu
,
C. T.
, and
Pan
,
C.
,
2009
, “
A Highly Stable Microchannel Heat Sink for Convective Boiling
,”
J. Micromech. Microeng.
,
19
(
5
), p.
055013
.10.1088/0960-1317/19/5/055013
14.
Balasubramanian
,
K.
,
Lee
,
P. C.
,
Jin
,
L.
,
Chou
,
S.
,
Teo
,
C.
, and
Gao
,
S.
,
2011
, “
Experimental Investigations of Flow Boiling Heat Transfer and Pressure Drop in Straight and Expanding Microchannels a Comparative Study
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2413
2421
.10.1016/j.ijthermalsci.2011.07.007
15.
Revellin
,
R.
, and
Thome
,
J. R.
,
2007
, “
A Theoretical Model for the Prediction of the Critical Heat Flux in Heated Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1216
1225
.10.1016/j.ijheatmasstransfer.2007.03.002
16.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase-Change Phenomena
, 2nd ed.,
Taylor and Francis
,
New York
.
17.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2010
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, V9.0
,”
Standard Reference Data program, National Institute of Standards and Technology
,
Gaithersburg, MD
.
18.
Tillner-Roth
,
R.
, and
Baehr
,
H. D.
,
1994
, “
An International Standard Formulation of the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane(HFC-134a) for Temperatures From 170 K to 455 K at Pressures up to 70 MPa
,”
J. Phys. Chem. Ref. Data
,
23
(
5
), pp.
657
729
.10.1063/1.555958
19.
Wagner
,
W.
, and
Pruss
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
585
.10.1063/1.1461829
20.
Tillner-Roth
,
R.
,
Harms-Watzenberg
,
F.
, and
Baehr
,
H. D.
,
1993
, “
Eine neue Fundamentalgleichung fuer Ammoniak
,”
DKV-Tagungsbericht
,
20
, pp.
167
181
.
21.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Wagner
,
W.
,
2009
, “
Thermodynamic Properties of Propane. III. A Reference Equation of State for Temperatures from the Melting Line to 650 K and Pressures up to 1000 MPa
,”
J. Chem. Eng. Data
,
54
(
12
), pp.
3141
3180
.10.1021/je900217v
22.
Buecker
,
D.
, and
Wagner
,
W.
,
2006
, “
Reference Equations of State for the Thermodynamic Properties of Fluid Phase n-Butane and Isobutane
,”
J. Phys. Chem. Ref. Data
,
35
(
2
), pp.
929
1019
.10.1063/1.1901687
23.
3M Corporation
,
2002
, “
3M Novec Engineered Fluid HFE-7100 Product Information
,” issue January,
http://
www.solutions.3m.com
24.
3M Corporation
,
2000
, “
Fluorinert Electronic Liquid FC-72 Product Information
,” issue May,
http://
www.solutions.3m.com
25.
Qu
,
W.
,
Mudawar
,
I.
,
Lee
,
S.-Y.
, and
Wereley
,
S. T.
,
2006
, “
Experimental and Computational Investigation of Flow Development and Pressure Drop in a Rectangular Micro-Channel
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
1
9
.10.1115/1.2159002
26.
Çengal
,
Y. A.
,
2007
,
Heat-and Mass Transfer: A Practical Approach
, 3rd ed.,
McGraw-Hill
,
New York
.
27.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley and Sons
,
Hoboken, NJ
.
28.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
29.
Lee
,
J.
, and
Mudawar
,
I.
,
2005
, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part II—Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
48
(
5
), pp.
941
955
.10.1016/j.ijheatmasstransfer.2004.09.019
30.
Ho
,
C.-M.
, and
Tai
,
Y.-C.
,
1998
, “
Micro-Electro-Mechanical Systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
579
612
.10.1146/annurev.fluid.30.1.579
31.
Chen
,
T.
, and
Garimella
,
S. V.
,
2012
, “
A Study of Critical Heat Flux During Flow Boiling in Microchannel Heat Sinks
,”
ASME J. Heat Transfer
,
134
(
1
), p.
011504
.10.1115/1.4004715
32.
Miner
,
M. J.
,
Phelan
,
P. E.
,
Ortiz
,
C. A.
, and
Odom
,
B. A.
, “
Experimental Measurements of Critical Heat Flux in Expanding Microchannel Arrays
,”
J. Heat Transfer
(submitted).
You do not currently have access to this content.