Microchannels have well-known applications in cooling because of their ability to handle large quantities of heat from small areas. Electrohydrodynamic (EHD) conduction pumping at the microscale has previously been demonstrated to effectively pump dielectric liquids through adiabatic microchannels by using electrodes that are flushed against the walls of the channel. In this study, an EHD micropump is used to pump liquid within a two-phase loop that contains a microchannel evaporator. Additional EHD electrodes are embedded within the evaporator, which can be energized separately from the adiabatic pump. The effect of these embedded electrodes on the heat transport process, flow rate, and pressure in the micro-evaporator and on the two-phase loop system is characterized. Local enhancements are found to be up to 30% at low heat fluxes. The reverse effect that phase-change has on the EHD conduction pumping phenomenon is also quantified.

References

1.
Yazdani
,
M.
, and
Seyed-Yagoobi
,
J.
,
2009
, “
Fluid Circulation Within a Spherical Reservoir With EHD Conduction Pumping
,”
IEEE Trans. Ind. Appl.
,
45
(
4
), pp.
1491
1498
.10.1109/TIA.2009.2023567
2.
Feng
,
Y.
, and
Seyed-Yagoobi
,
J.
,
2006
, “
Control of Adiabatic Two-Phase Dielectric Fluid Flow Distribution With EHD Conduction Pumping
,”
J. Electrost.
,
64
(
7–9
), pp.
621
627
.10.1016/j.elstat.2005.10.034
3.
Jeong
,
S.-I.
, and
Didion
,
J.
,
2008
, “
Performance Characteristics of Electrohydrodynamic Conduction Pump in Two-Phase Loops
,”
J. Thermophys. Heat Transfer
,
22
(
1
), pp.
90
97
.10.2514/1.23680
4.
Seyed-Yagoobi
,
J.
,
2005
, “
Electrohydrodynamic Pumping of Dielectric Liquids
,”
J. Electrost.
,
63
(
6–10
), pp.
861
869
.10.1016/j.elstat.2005.03.047
5.
Atten
,
P.
, and
Seyed-Yagoobi
,
J.
,
2003
, “
Electrohydrodynamically Induced Dielectric Liquid Flow Through Pure Conduction in Point/Plane Geometry
,”
IEEE Trans. Dielectr. Electric. Insul.
,
10
(
1
), pp.
27
36
.10.1109/TDEI.2003.1176555
6.
Jeong
,
S.-I.
, and
Seyed-Yagoobi
,
J.
,
2002
, “
Experimental Study of Electrohydrodynamic Pumping Through Conduction Phenomenon
,”
J. Electrost.
,
56
(
2
), pp.
123
133
.10.1016/S0304-3886(02)00058-X
7.
Pearson
,
M. R.
, and
Seyed-Yagoobi
,
J.
,
2009
, “
Advances in Electrohydrodynamic Conduction Pumping
,”
IEEE Trans. Dielectr. Electric. Insul.
,
16
(
2
), pp.
424
434
.10.1109/TDEI.2009.4815174
8.
Singhal
,
V.
,
Garimella
,
S. V.
, and
Raman
,
A.
,
2004
, “
Microscale Pumping Technologies for Microchannel Cooling Systems
,”
Appl. Mech. Rev.
,
57
(
3
), pp.
191
221
.10.1115/1.1695401
9.
Richter
,
A.
,
Plettner
,
A.
,
Hofmann
,
K. A.
, and
Sandmaier
,
H.
,
1991
, “
Micromachined Electrohydrodynamic (EHD) Pump
,”
Sens. Actuators, A
,
29
(
2
), pp.
159
168
.10.1016/0924-4247(91)87118-M
10.
Furuya
,
A.
,
Shimokawa
,
F.
,
Matsuura
,
T.
, and
Sawada
,
R.
,
1996
, “
Fabrication of Fluorinated Polyimide Microgrids Using Magnetically Controlled Reactive Ion Etching (MC-RIE) and Their Applications to an Ion Drag Integrated Micropump
,”
J. Micromech. Microeng
,
6
(
3
), pp.
310
319
.10.1088/0960-1317/6/3/003
11.
Ahn
,
S.-H.
, and
Kim
,
Y.-K.
,
1998
, “
Fabrication and Experiment of a Planar Micro Ion Drag Pump
,”
Sens. Actuators, A
,
70
(
1–2
), pp.
1
5
.10.1016/S0924-4247(98)00105-8
12.
Darabi
,
J.
,
Rada
,
M.
,
Ohadi
,
M.
, and
Lawler
,
J.
,
2002
, “
Design, Fabrication, and Testing of an Electrohydrodynamic Ion-Drag Micropump
,”
J. Microelectromech. Syst.
,
11
(
6
), pp.
684
690
.10.1109/JMEMS.2002.805046
13.
Bart
,
S. F.
,
Tavrow
,
L. S.
,
Mehregany
,
M.
, and
Lang
,
J. H.
,
1990
, “
Microfabricated Electrohydrodynamic Pumps
,”
Sens. Actuators, A
,
21
(
1–3
), pp.
193
197
.10.1016/0924-4247(90)85037-5
14.
Fuhr
,
G.
,
Hagedorn
,
R.
,
Müller
,
T.
,
Benecke
,
W.
, and
Wagner
,
B.
,
1992
, “
Microfabricated Electrohydrodynamic (EHD) Pumps for Liquids of Higher Conductivity
,”
J. Microelectromech. Syst.
,
1
(
3
), pp.
141
146
.10.1109/84.186393
15.
Fuhr
,
G.
,
Schnelle
,
T.
, and
Wagner
,
B.
,
1994
, “
Travelling Wave-Driven Microfabricated Electrohydrodynamic Pumps for Liquids
,”
J. Micromech. Microeng.
,
4
(
4
), pp.
217
226
.10.1088/0960-1317/4/4/007
16.
Singhal
,
V.
, and
Garimella
,
S. V.
,
2007
, “
Induction Electrohydrodynamics Micropump for High Heat Flux Cooling
,”
Sens. Actuators, A
,
134
(
2
), pp.
650
659
.10.1016/j.sna.2006.05.007
17.
Singhal
,
V.
, and
Garimella
,
S. V.
,
2005
, “
A Novel Valveless Micropump With Electrohydrodynamic Enhancement for High Heat Flux Cooling
,”
IEEE Trans. Adv. Packag.
,
28
(
2
), pp.
216
230
.10.1109/TADVP.2005.847430
18.
Singhal
,
V.
, and
Garimella
,
S. V.
,
2005
, “
Influence of Bulk Fluid Velocity on the Efficiency of Electrohydrodynamic Pumping
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
484
494
.10.1115/1.1899173
19.
Pearson
,
M. R.
, and
Seyed-Yagoobi
,
J.
,
2011
, “
Experimental Study of EHD Conduction Pumping at the Meso- and Micro-Scale
,”
J. Electrost.
,
69
, pp.
479
485
.10.1016/j.elstat.2011.06.003
20.
Yazdani
,
M.
, and
Seyed-Yagoobi
,
J.
,
2009
, “
Electrically Induced Dielectric Liquid Film Flow Based on Electric Conduction Phenomenon
,”
IEEE Trans. Dielectr. Electric. Insul.
,
16
(
3
), pp.
768
777
.10.1109/TDEI.2009.5128517
21.
Pearson
,
M. R.
,
2011
, “
Micro-Scale EHD Conduction-Driven Pumping and Heat Transfer Enhancement in Single- and Two-Phase Systems
,” Ph.D. thesis,
Illinois Institute of Technology
,
Chicago
.
22.
DuPont Fluorochemicals
,
1998
,
DuPont HCFC-123: Properties, Uses, Storage, and Handling
.
23.
DuPont
,
2004
,
Thermodynamic Properties of HCFC-123
.
24.
Arora
,
C. P.
,
2000
,
Refrigeration and Air Conditioning
, 2nd ed.,
Tata McGraw-Hill
,
New Delhi, India
.
You do not currently have access to this content.