Predicting the thermal conductivity of loose-fill fibrous thermal insulation is a complex problem, when considering the combined conduction, convection, and radiation heat transfer within a scattering, emitting, and absorbing medium. A piecewise model for predicting the overall apparent thermal conductivity of large diameter opaque fibrous materials was developed by considering the radiation heat transfer, solid conduction and air conduction components separately. The model utilized the physical parameters of emissivity, the density of the solid fiber material, the percentage composition and range of fiber diameter, and the mean fiber diameter to develop specific equations for piecewise contribution from radiation, solid fiber conduction, and air conduction toward the overall effective thermal conductivity. It can be used to predict the overall apparent thermal conductivity for any opaque fibrous specimen of density (ρ), known thickness (t), mean temperature (T), and temperature gradient (ΔΤ). Thermal conductivity measurements were conducted in accordance with ASTM C518 specifications on 52 mm thick, 254 mm square test specimens for coconut and sugarcane fibers. The test apparatus provided results with an accuracy of 1%, repeatability of 0.2%, and reproducibility of 0.5%. The model was applied to and compared with experimental data for coconut and sugarcane fiber specimens and predicted the apparent thermal conductivity within 7% of experimental data over the density range tested. The model also predicted the optimum density range for both coconut and sugarcane fibers.

References

1.
Cui
,
P.
,
Wang
,
F.
, and
Liang
,
Z.
, 2011, “
Improved Computation Formula of Thermal Conductivity of Fibrous Porous Materials
,”
Adv. Mater. Res.
,
152–153
, pp.
605
612
.
2.
Wang
,
M.
, and
Pan
,
N.
, 2008, “
Modeling and Prediction of the Effective Thermal Conductivity of Random Open-Cell Porous Foams
,”
Int. J. Heat Mass Transfer
,
51
, pp.
1325
1331
.
3.
Stops
,
D. W.
, 1964, “
Heat Transfer by Simultaneous Conduction and Radiation Through a Non-Absorbing Medium
,”
Br. J. Appl. Phys.
,
15
, pp.
311
312
.
4.
Lei
,
Z.
, and
Zhu
,
S.
, 2010, “
Transient Methods of Thermal Properties Measurement on Fibrous materials
,”
ASME J. Heat Transfer
,
132
(
3
), pp.
89
92
.
5.
Linford
,
R. M.
,
Schmitt
,
R. J.
, and
Hughes
,
T. A.
, 1974, “
Radiative Contribution to the Thermal Conductivity of Fibrous Insulation
,”
Heat Transmission Measurements in Thermal Insulations
, ASTM STP 544, American Society for Testing and Materials, pp.
68
84
.
6.
Yuen
,
W. W.
, and
Wong
,
L. W.
, 1980, “
Heat Transfer by Vonduction and Radiation in a One-Dimensional Absorbing, Emitting and Anisotropically Scattering Medium
,”
ASME J. Heat Transfer
,
102
, pp.
303
307
.
7.
Klemens
,
P. G.
, and
Kim
,
N.
, 1982, “
Radiative Heat Transfer in Inhomogeneous Media and Insulation
,”
Proceedings of the 17th International Conference on Thermal Conductivity
,
J. G.
Hust
, ed., pp.
329
340
.
8.
Berg
,
J. I.
, 1982, “
A Diffusion Model of Radiation Heat Transfer in Scattering and Absorbing Media
,”
Proceedings of the 17th International Conference on Thermal Conductivity
,
J. G.
Hust
, ed., pp.
453
458
.
9.
Fine
,
H. A.
,
Jury
,
S. H.
,
Yarbrough
,
D. W.
, and
McElroy
,
D. L.
, 1983, “
The Optically Thin Boundary Approximation to Conductive and Radiative Heat Transfer
,”
J. Therm. Insul.
,
6
, pp.
216
229
.
10.
Chung
,
T. J.
, and
Kim
,
J. Y.
, 1984, “
Two Dimensional, Combined-Mode Heat Transfer by Conduction, Convection and Radiation in Emitting, Absorbing and Scattering Media-Solution by Finite Elements
,”
ASME J. Heat Transfer
,
106
, pp.
448
452
.
11.
Yajnik
,
S.
, and
Roux
,
J. A.
, 1987, “
Apparent Thermal Conductivity of High Density and Low Density Fibreglass Insulations
,”
Proceedings of the 20th International Conference on Thermal Conductivity
,
D. P. H.
Hasselman
and
J. R.
Thomas
, eds., pp.
25
39
.
12.
Finck
,
J. L.
, 1930, “
Mechanisms of Heat Flow in Fibrous Materials
,”
Bur. Stand. J. Res.
,
5
, pp.
973
984
.
13.
Verschoor
,
J. D.
, and
Greebler
,
P.
, 1952, “
Heat Transfer by Gas Conduction and Radiation in Fibrous Insulation
,”
Trans. Am. Soc. Mech. Eng.
,
74
, pp.
961
968
.
14.
Bankvalle
,
C. G.
, 1974, “
Mechanisms of Heat Transfer in Permeable Insulation and Their Investigation in a special Guarded Hot Plate
,”
Heat Transmission Measurements in Thermal Insulation
, ASTM STP 544, American Society for Testing and Materials, pp.
34
38
.
15.
Bankvalle
,
C. G.
, 1973, “
Heat Transfer in Fibrous Materials
,”
J. Test. Eval.
,
1
(
3
), pp.
235
243
.
16.
Bhattacharyya
,
R. K.
, 1980, “
Heat-Transfer Model for Fibrous Insulation
,”
Thermal Insulation Performance
, ASTM STP 718,
D. L.
McElroy
and
R. P.
Tye
, eds.,
American Society for Testing and Materials
, pp.
272
286
.
17.
Bomberg
,
M.
, and
Klarsfeld
,
S.
, 1983, “
Semi-Empirical Model of Heat Transfer in Dry Mineral Fiber Insulation
,”
J. Therm. Insul.
,
45
(
5
), pp.
156
173
.
18.
Reiss
,
H.
, and
Ziegenbein
,
A.
, 1985, “
Analysis of Local Thermal Conductivity in Inhomogeneous Glass Fiber
,”
High Temp.-High Press.
,
17
, pp.
403
412
.
19.
Tong
,
T. W.
,
McElroy
,
D. L.
, and
Yarbrough
,
D. W.
, 1985, “
Transient Conduction and Radiation Heat Transfer in Porous Thermal Insulation
,”
J. Therm. Insul.
,
9
, pp.
13
29
.
20.
Stephenson
,
M. E.
, and
Mark
,
M.
, 1961, “
Thermal Conductivity of Porous Material
,”
ASHRAE J.
,
1
, pp.
75
81
.
21.
Malikov
,
Y. K.
,
Lisienko
,
V. G.
, and
Shirinkin
,
V. A.
, 1985, “
Radiant Heat Transfer in a Layer of Fibrous Material
,”
High Temp.
,
23
(
4
), pp.
605
611
.
22.
Paul
,
H. L.
, and
Diller
,
K. R.
, 2003, “
Comparison of Thermal Insulation Performance of Fibrous Materials for the Advanced Space Unit
,”
J. Biomech. Eng.
,
125
(
5
), pp.
639
647
.
23.
Pettyjohn
,
R. R.
, 1967, “
Thermal Conductivity Measurements on a Fibrous Insulation Material
,”
Proceedings of the 7th international Conference on Thermal Conductivity
,
D. R.
Flynn
and
B. A.
Peavy
, eds., pp.
729
736
.
24.
Yajnik
,
S.
, and
Roux
,
J. A.
, 1987, “
Apparent Thermal Conductivity of High Density and Low Density Fiberglass Insulation
,”
Proceedings of the 20th International Conference on Thermal Conductivity
,
D. P. H.
Hasselman
and
J. R.
Thomas
, eds., pp.
25
39
.
25.
Abuaf
,
N.
, and
Jaster
,
H.
, 1990, “
Apparent Thermal Conductivity of Fiberglass Insulation
,”
J. Therm. Insul.
,
14
, pp.
135
155
.
26.
King
,
C. R.
, 1978, “
Fibrous Insulation Heat-Transfer Models
,”
Thermal Transmission Measurements of Insulation
, ASTM STP 660,
R. P.
Tye
, ed.,
American Society for Testing and Materials
, pp.
281
292
.
27.
Wang
,
M.
,
He
,
J.
,
Yu
,
J.
, and
Pan
,
N.
, 2007, “
Lattice Boltzmann Modeling of the Effective Thermal Conductivity for Fibrous Materials
,”
Int. J. Therm. Sci.
,
46
, pp.
848
855
.
28.
Nelkon
,
M.
, and
Parker
,
P.
, 1987,
Advanced Level Physics
,
Heinemann Educational Books
,
London
, p.
254
.
29.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1990,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
, pp.
738
740
.
30.
Glicksman
,
L. R.
, 1994, “
Heat Transfer in Foams
,”
Low Density Cellular Plastics, Physical Basis of behavior
,
N. C.
Hilyard
and
A.
Cunningham
, eds.,
Chapman and Hall
,
London
, pp.
104
152
.
31.
King
,
R. L.
, 1988, “
Statistical Derivation of Design Data for Composite Materials. Computer Aided Design in Composite Material Technology
,”
Proceedings of the International Heat Transfer Conference
,
C. A.
Brebbia
,
U. K.
Front Cover
and
L. C.
Wrobel
, eds.,
Southampton
, pp.
525
545
.
32.
Jager
,
R. M.
1993,
Statistics
.
Sage Publications
,
London
.
33.
CARIRI Service Project Report, 1996, “
Investigation of Bagasse and Coconut Fiber
,”
Caribbean Industrial Research Institute
, Tunapuna, Trinidad and Tobago, Report No. 794/96.
34.
Cardenas
,
T. J.
, and
Bible
,
G. T.
, 1987, “
The Thermal Properties of Wood—Data Base
,”
Thermal Insulation: Materials and Systems
, ASTM STP 922,
F. J.
Powell
and
S. L.
Matthews
, eds.,
American Society for Testing and Materials
, pp.
238
282
.
35.
Kochhar
,
G. S.
, and
Manohar
,
K.
, 1990, “
Thermal Conductivity of Some Caribbean Timber
,”
West Indian J. Eng.
,
15
(
1
), pp.
85
93
.
36.
Barned
,
J. R.
, and
O’Brien
,
L. F.
, 1970, “
Thermal Conductivity of Building Materials
,”
Commonwealth Scientific and Industrial Research Organisation
, Victoria, Australia, Report No. 2.
You do not currently have access to this content.