A numerical study was conducted to investigate the effects of dimple depth on the flow and heat transfer characteristics in a pin fin-dimple channel, where dimples are located spanwisely between the pin fins. The study aimed at promoting the understanding of the underlying convective heat transfer mechanisms in the pin fin-dimple channels and improving the cooling design for the gas turbine components. The flow structure, friction factor, and heat transfer performance of the pin fin-dimple channels with various dimple depths have been obtained and compared with each other for the Reynolds number range of 8200–80,800. The study showed that, compared to the pin fin channel, the pin fin-dimple channels have further improved convective heat transfer performance, and the pin fin-dimple channel with deeper dimples shows relatively higher Nusselt number values. The study still showed a dimple depth-dependent flow friction performance for the pin fin-dimple channels compared to the pin fin channel, and the pin fin-dimple channel with shallower dimples shows relatively lower friction factors over the studied Reynolds number range. Furthermore, the computations showed the detailed characteristics in the distribution of the velocity and turbulence level in the flow, which revealed the underlying mechanisms for the heat transfer enhancement and flow friction reduction phenomenon in the pin fin-dimple channels.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
, 2001,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
2.
Han
,
J. C.
, 2006, “
Turbine Blade Cooling Studies at Texas A&M University: 1980–2004
,”
J. Thermophys. Heat Transfer
,
20
, pp.
161
187
.
3.
Van Fossen
,
G. J.
, 1982, “
Heat Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
ASME J. Eng. Power
,
104
, pp.
268
274
.
4.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
, 1982, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
,
104
, pp.
700
706
.
5.
Metzger
,
D. E.
,
Fan
,
Z. X.
, and
Shepard
,
W. B.
, 1982, “
Pressure Loss and Heat Transfer Through Multiple Rows of Short Pin Fins
,”
Heat Transfer
, Vol.
3
,
U.
Grigull
, ed.,
Hemisphere
,
Washington, DC
, pp.
137
142
.
6.
Metzger
,
D. E.
,
Shepard
,
W. B.
, and
Haley
,
S. W.
, 1986, “
Row Resolved Heat Transfer Variations in Pin Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence
,” ASME Paper No. 86-GT-132.
7.
Chyu
,
M. K.
, 1990, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-Endwall Fillet
,”
ASME J. Heat Transfer
,
112
, pp.
926
932
.
8.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I. P.
, and
Natarajan
,
V.
, 1999, “
Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
,
121
, pp.
257
263
.
9.
Lau
,
S. C.
,
Han
,
J. C.
, and
Kim
,
Y. S.
, 1989, “
Turbulent Heat Transfer and Friction in Pin Fin Channels With Lateral Flow Ejection
,”
ASME J. Heat Transfer
,
111
, pp.
51
58
.
10.
McMillin
,
R. D.
, and
Lau
,
S. C.
, 1994, “
Effects of Trailing-Edge Ejection on Local Heat (Mass) Transfer in Pin Fin Cooling Channels in Turbine Blades
,”
ASME J. Turbomach.
,
116
, pp.
159
168
.
11.
Won
,
S. Y.
,
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
, 2004, “
Spatially-Resolved Heat Transfer and Flow Structure in a Rectangular Channel With Pin Fins
,”
Int. J. Heat Mass Transfer
,
47
, pp.
1731
1743
.
12.
Ames
,
F. E.
,
Dvorak
,
L. A.
, and
Morrow
,
M. J.
, 2005, “
Turbulent Augmentation of Internal Convection Over Pins in Staggered-Pin Fin Arrays
,”
ASME J. Turbomach.
,
127
, pp.
183
190
.
13.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
, 2003, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
, pp.
337
362
.
14.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
, 1997, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,” ASME Paper No. 97-GT-437.
15.
Moon
,
H. K.
,
O’Connell
,
T.
, and
Gletzer
,
B.
, 2000, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME J. Eng. Gas Turbines Power
,
122
, pp.
307
313
.
16.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
, 2001, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
, pp.
115
123
.
17.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
, 2002, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number and Flow Structure
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2011
2020
.
18.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmood
,
G. I.
, and
Hill
,
M. L.
, 2001, “
Flow Structure Due to Dimple Depression on a Channel Surface
,”
Phys. Fluids
,
13
, pp.
3442
3451
.
19.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
, 2005, “
Effects of Dimple Depth on Channel Nusselt Numbers and Friction Factors
,”
ASME J. Heat Transfer
,
127
, pp.
839
847
.
20.
Rao
,
Y.
,
Wan
,
C. Y.
, and
Zang
,
S. S.
, 2010, “
Comparisons of Flow Friction and Heat Transfer Performance in Rectangular Channels With Pin Fin-Dimple, Pin Fin and Dimple Arrays
,” ASME Paper No. GT2010-22442.
21.
FLUENT, 2006, 6.3 Help Document, Fluent, Inc.
22.
Park
,
J.
,
Desam
,
P. R.
, and
Ligrani
,
P. M.
, 2004, “
Numerical Predictions of Flow Structure Above a Dimpled Structure in a Channel
,”
Numer. Heat Transfer, Part A
,
45
, pp.
1
20
.
23.
Gee
,
D. L.
, and
Webb
,
R. L.
, 1980, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
23
, pp.
1127
1136
.
24.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
, 2005,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw-Hill, Inc.
,
New York
.
You do not currently have access to this content.