In this study, a simple spectral-finite volume approach for hyperbolic heat conduction problems under periodic surface temperature is presented. In this approach, by choosing only three frequencies from a continuum frequency spectrum of the periodic temperature field, the time dependent governing equation is transformed into the steady state one in the frequency domain. Then, using the finite volume technique, temperature field in the frequency domain for each wave number is obtained. Finally, by transforming back the result to the time domain, the temperature field in the time domain would be obtained. This new method has been validated against some published results and a good agreement has been found. Despite the simplicity of the present method, it is able to accurately predict the temperature distribution in the periodic steady state portion of non-Fourier heat conduction problems subjected to periodic surface temperature.

References

1.
Narasimhan
,
T. N.
, 1999, “
Fourier’s Heat Conduction Equation: History, Influence and Connections
,”
Rev. Geophys.
,
37
(
1
), pp.
151
172
.
2.
Moosaei
,
A.
, 2008, “
Non-Fourier Heat Conduction in a Finite Medium Subjected to Arbitrary Non-Periodic Surface Disturbance
,”
Int. Commun. Heat Mass
,
35
, pp.
376
383
.
3.
Monterio
,
E. R.
,
Macdo
,
E. N.
,
Quaresma
,
J. N. N.
, and
Cotta
,
R. M.
, 2009, “
Integral Transform Solution for Hyperbolic Heat Conduction in a Finite Slab
,”
Int. Commun. Heat Mass
,
36
, pp.
297
303
.
4.
Chen
,
T. M.
, and
Chen
,
C. C.
, 2010, “
Numerical Solution for the Hyperbolic Heat Conduction Problems in the Radial-Spherical Coordinate System Using a Hybrid Green’s Function Method
,”
Int. J. Therm. Sci.
,
49
, pp.
1193
1196
.
5.
Chen
,
T. M.
, 2010, “
Numerical Solution of Hyperbolic Heat Conduction Problems in the Cylindrical Coordinate System by Hybrid Green’s Function Method
,”
Int. J. Heat Mass
,
53
, pp.
1319
1325
.
6.
Chen
,
T. M.
, 2009, “
A Hybrid Green’s Function Method for the Hyperbolic Heat Conduction Problems
,”
Int. J. Heat Mass
,
52
, pp.
4273
4278
.
7.
Babaei
,
M. H.
, and
Chen
,
Z. T.
, 2008, “
Hyperbolic Heat Conduction in a Functionally Graded Hollow Sphere
,”
Int. J. Thermophys.
,
29
, pp.
1457
1469
.
8.
Mishra
,
S. C.
,
Stephen
,
A.
, and
Kim
,
M. Y.
, 2010, “
Analysis of Non-Fourier Conduction-Radiation Heat Transfer in a Cylindrical Enclosure
,”
Numer. Heat Transfer, Part A
,
58
, pp.
943
962
.
9.
Gembarovic
,
J.
, and
Gembarovic
,
J.
Jr.,
, 2004, “
Non-Fourier Heat Conduction Modeling in a Finite Medium
,”
Int. J. Thermophys.
,
25
(
4
), pp.
1261
1268
.
10.
Guo
,
Z. Y.
, and
Xu
,
Y. S.
, 1995, “
Non-Fourier Heat Conduction in IC Chip
,”
ASME J. Heat Transfer
,
117
, pp.
174
177
.
11.
Peshkov
,
V.
, 1944, “
Second Sound in Helium II
,”
J. Phys. (USSR)
,
8
, pp.
381
382
.
12.
Diatta
,
B.
,
Wafo Soh
,
C.
, and
Khalique
,
C. M.
, 2008, “
Approximate Symmetries and Solutions of the Hyperbolic Heat Equation
,”
Appl. Math. Comput.
,
205
, pp.
263
272
.
13.
Kaminski
,
W.
, 1990, “
Hyperbolic Heat Conduction Equation for Materials With Non-Homogeneous Inner Structure
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
555
560
.
14.
Zhang
,
P.
,
Murakami
,
M.
, and
Wang
,
R. Z.
, 2006, “
Study of the Transient Thermal Wave Heat Transfer in a Channel Immersed in a Bath of Super Fluid Helium
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1384
1394
.
15.
Maurer
,
M. J.
, and
Thompson
,
H. A.
, 1973, “
Non-Fourier Effects at High Heat Flux
,”
ASME J. Heat Transfer
,
95
, pp.
284
286
.
16.
Mitra
,
K.
,
Kumar
,
S.
,
Vedavarz
,
A.
, and
Moallemi
,
M. K.
, 1995, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer
,
117
, pp.
568
573
.
17.
Cattaneo
,
C.
, 1958, “
A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation
,”
C. R. Hebd. Seances Acad. Sci.
,
247
, pp.
431
433
.
18.
Vernotte
,
P.
, 1958, “
Les paradoxes de la théorie continue de l’équation de la chaleur
,”
C. R. Hebd. Seances Acad. Sci.
,
246
, pp.
3154
3155
.
19.
Moosaei
,
A.
, 2007, “
Non-Fourier Heat Conduction in a Finite Medium With Insulated Boundaries and Arbitrary Initial Conditions
,”
Int. J. Heat Mass Transfer
,
35
(
1
), pp.
103
111
.
20.
Moosaei
,
A.
, 2007, “
Non-Fourier Heat Conduction in a Finite Medium Subjected to Arbitrary Periodic Surface Disturbance
,”
Int. Commun. Heat Mass Transfer
,
34
(
8
), pp.
996
1002
.
21.
Moosaei
,
A.
, 2008, “
Non-Fourier Heat Conduction in a Finite Medium Subjected to Arbitrary Non-Periodic Surface Disturbance
,”
Int. Commun. Heat Mass Transfer
,
35
(
3
), pp.
376
383
.
22.
Moosaei
,
A.
,
Atefi
,
G.
, and
Fardad
,
A. A.
, 2008, “
Two-Dimensional Non-Fourier Heat Conduction With Arbitrary Initial and Periodic Boundary Conditions
,”
Forsch. Ingenieurwes.
,
72
, pp.
67
76
.
23.
Saleh
,
A.
, and
Al-Nimr
,
M.
, 2008, “
Variational Formulation of Hyperbolic Heat Conduction Problems Applying Laplace Transform Technique
,”
Int. Commun. Heat Mass Transfer
,
35
, pp.
204
214
.
24.
Tang
,
D. W.
, and
Araki
,
N.
, 1996, “
Non-Fourier Heat Conduction in a Finite Medium Under Periodic Surface Thermal Disturbance
,”
Int. J. Heat Mass Transfer
,
39
(
8
), pp.
1585
1590
.
25.
Lewandowska
,
M.
, and
Madinowski
,
L.
, 2006, “
An Analytical Solution of the Hyperbolic Heat Conduction Equation for the Case of a Finite Medium Symmetrically Heated on Both Sides
,”
Int. Commun. Heat Mass Transfer
,
33
, pp.
61
69
.
26.
Glass
,
D. E.
,
Ozisil
,
M. N.
,
McRae
,
D. S.
, and
Vick
,
B.
, 1985, “
On the Numerical Solution of Hyperbolic Heat Conduction
,”
Numer. Heat Transfer
,
8
, pp.
497
504
.
27.
Tamma
,
K. K.
, and
Railkar
,
S. B.
, 1989, “
Specially Tailored Transfinite-Element Formulations for Hyperbolic Heat Conduction Involving Non-Fourier Effects
,”
Numer. Heat Transfer, Part B
,
15
, pp.
211
226
.
28.
Tamma
,
K. K.
, and
D’Costa
,
J. F.
, 1991, “
Transient Modeling Analysis of Hyperbolic Heat Conduction Problems Employing Mixed Implicit Explicit Method
,”
Numer. Heat Transfer, Part B
,
19
, pp.
49
68
.
29.
Yang
,
H. Q.
, 1990, “
Characteristics-Based, High-Order Accurate and Non Oscillatory Numerical Method for Hyperbolic Heat Conduction
,”
Numer. Heat Transfer, Part B
,
18
, pp.
221
241
.
30.
Liu
,
K. C.
,
Lin
,
C. N.
, and
Wang
,
J. S.
, 2005, “
Numerical Solutions for the Hyperbolic Heat Conduction Problems in a Layered Solid Cylinder With Radiation Surface
,”
Appl. Math. Comput.
,
164
, pp.
805
820
.
31.
Zhang
,
S.
,
Zhang
,
H. W.
,
Yang
,
D. S.
, and
Bi
,
J. Y.
, 2011, “
Multiple Spatial and Temporal Scales Method for Numerical Simulation of Non-Fourier Heat Conduction Problems: Multidimensional Case
,”
Int. J. Heat Mass Transfer
,
54
, pp.
836
873
.
32.
Fan
,
Q. M.
, and
Lu
,
W. Q.
, 2002, “
A New Numerical Method to Simulate the Non-Fourier Heat Conduction in a Single-Phase Medium
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2815
2821
.
33.
Roy
,
S.
,
Vasudeva Murthy
,
A. S.
, and
Kudenatti
,
R. B.
, 2009, “
A Numerical Method for the Hyperbolic Heat Conduction Equation Based on Multiple Scale Technique
,”
Appl. Numer. Math.
,
59
, pp.
1419
1430
.
34.
Ming Chen
,
T.
, and
Chih Chen
,
C.
, 2010, “
Numerical Solution for the Hyperbolic Heat Conduction Problems in the Radial-Spherical Coordinate System Using a Hybrid Green’s Function Method
,”
Int. J. Therm. Sci.
,
49
, pp.
1193
1196
.
35.
Lin
,
J. Y.
, 1998, “
The Non-Fourier Effect on the Fin Performance Under Periodic Thermal Conditions
,”
Appl. Math. Model.
,
22
, pp.
629
640
.
You do not currently have access to this content.