Superlattices made by superposing dielectric and metal nanolayers are of great interest as their small size restricts the thermal energy carrier mean free path, decreasing the thermal conductivity and thereby increasing the thermoelectric figure of merit. It is, therefore, essential to predict their thermal conductivity. Potentials for Au and Si are discussed, and the potential of second nearest-neighbor modified embedded atom method (2NN MEAM) is chosen as being the best for simulating heat transfer in Si/Au systems. Full 2NN MEAM Si/Au cross-potential parameterization is developed, and the results are compared with ab initio calculations to test its ability to reproduce local density approximation (LDA) calculations. Volume-constant (NVT) molecular dynamics simulations are performed to deposit Au atoms on an Si substrate by physical vapor deposition, and the results of the intermixing zone are in good agreement with the Cahn and Hilliard theory. Nonequilibrium molecular dynamics simulations are performed for an average temperature of 300 K to determine the Kapitza conductance of Si/Au systems, and the obtained value of 158 MW/m 2 K is in good agreement with the results of Komarov et al. for Au deposited on isotopically pure Si- 28 and natural Si, with values ranging between 133 and 182 MW/m2 K.

References

1.
Green
,
M. L.
,
Schenck
,
P. K.
,
Chang
,
K.-S.
,
Ruglovsky
,
J.
, and
Vaudin
,
M.
, 2009, “
Higher-k Dielectrics for Advanced Silicon Microelectronic Devices: A Combinatorial Research Study
,”
Microelectron. Eng.
,
86
(
7-9
), pp.
1662
1664
.
2.
Vastola
,
G.
,
Marzegalli
,
A.
,
Montalenti
,
F.
, and
Miglio
,
L.
, 2009, “
Strain and Strain-Release Engineering at Epitaxial SiGe Islands on Si (001) for Microelectronic Applications
,”
Mater. Sci. Eng., B
,
159–160
(
Sp. Iss
), pp.
90
94
.
3.
Liu
,
M.
,
Lu
,
Y.
,
Zhang
,
J.
,
Xia
,
S.
, and
Yang
,
J.
, 2009, “
MEMS/Microelectronics Self-Assembly Based on Analogy of Langmuir-Blodgett Approach
,”
Microelectron. Eng.
,
86
(
11
), pp.
2279
2282
.
4.
Lee
,
K.-N.
,
Lee
,
D.-S.
,
Jung
,
S.-W.
,
Jang
,
Y.-H.
,
Kim
,
Y.-K.
, and
Seong
,
W.-K.
, 2009, “
A High-Temperature MEMS Heater Using Suspended Silicon Structures
,”
J. Micromech. Microeng.
,
19
(
11
), p.
115011
.
5.
Phanta
,
B. N.
,
Dahal
,
R.
,
Li
,
J.
,
Jiang
,
H. X.
, and
Pomremke
,
G.
, 2008, “
Thermoelectric Properties of InxGa1xN Alloys
,”
App. Phys. Lett.
,
92
(
4
), p.
042112
.
6.
Rutherford
,
A. M.
, and
Duffy
,
D. M.
, 2007, “
The Effect of Electron-Ion Interactions on Radiation Damage Simulations
,”
J. Phys.: Condens. Matter
,
19
(
49
), p.
496201
.
7.
Hu
,
M.
,
Keblinski
,
P.
, and
Schelling
,
P.
, 2009, “
Kapitza Conductance of Silicon-Amorphous Polyethylene Interfaces by Molecular Dynamics Simulations
,”
Phys. Rev. B
,
79
(
10
), p.
104305
.
8.
Luo
,
T.
, and
Lloyd
,
J. R.
, 2010, “
Non-Equilibrium Molecular Dynamics Study of Thermal Energy Transport in Au-SAM-Au Junctions
,”
Int. J. Heat Mass Transfer
,
53
(
1-3
), pp.
1
11
.
9.
Shin
,
S.
,
Kaviany
,
M.
,
Desai
,
T.
, and
Bonner
,
R.
, 2010, “
Roles of Atomic Restructuring in Interfacial Phonon Transport
,”
Phys. Rev. B
,
82
(
8
), p.
081302
.
10.
Hopkins
,
P. E.
,
Norris
,
P.
, and
Stevens
,
R. J.
, 2008, “
Influence of Inelastic Scattering at Metal-Dielectric Interfaces
,”
ASME J. Heat Transfer
,
130
(
2
), p.
022401
.
11.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.
12.
Mahan
,
J. D.
, 2009, “
Kaptiza Thermal Resistance Between a Metal and a Nonmetal
,”
Phys. Rev. B
,
79
(
7
), p.
075408
.
13.
Sergeev
,
A.
, 1999, “
Inelastic Electron Boundary Scattering in Thin Films
,”
Phys. B
,
263–264
, pp.
217
219
.
14.
Hopkins
,
P. E.
, and
Norris
,
P.
, 2007, “
Substrate Influence in Electron-Phonon Coupling Measurements in Thin Au Films
,”
Appl. Surf. Sci.
,
253
(
15
), pp.
6289
6294
.
15.
Termentzidis
,
K.
,
Parasuraman
,
J.
,
Cruz
,
C. A.
,
Merabia
,
S.
,
Angelescu
,
D.
,
Marty
,
F.
,
Bourouina
,
T.
,
Kleber
,
X.
,
Chantrenne
,
P.
, and
Basset
,
P.
, 2011, “
Thermal Conductivity and Thermal Boundary Resistance of Nanostructures
,”
Nanoscale Res. Lett.
,
6
,
p.
288
.
16.
Vashaee
,
D.
, and
Shakouri
,
A.
, 2004, “
Electronic and Thermoelectric Transport in Semiconductor and Metallic Superlattices
,”
J. Appl. Phys.
,
95
(
3
), pp.
1233
1245
.
17.
Vashaee
,
D.
, and
Shakouri
,
A.
, 2004, “
Improved Thermoelectric Power Factor in Metal-Based Superlattices
,”
Phys. Rev. Lett.
,
92
(
10
), p.
106103
.
18.
Ceelen
,
W. C. A. N.
,
Moest
,
B.
,
Ridder
,
M.
,
Ijzendoorn
,
L. J. V.
,
Gon
,
A. W. D. V.
, and
Brongersma
,
H. H.
, 1998, “
Ultrathin Au layers on Si (100): Surface Silicide Formation at Room Temperature
,”
Appl. Surf. Sci.
,
134
(
1-4
), pp.
87
94
.
19.
Kuo
,
C.-L.
, and
Clancy
,
P.
, 2004, “
MEAM Molecular Dynamics Study of a Gold Film on a Silicon Substrate
,”
Surf. Sci.
,
551
(
1-2
), pp.
39
58
.
20.
Ryu
,
S.
, and
Cai
,
W.
, 2010, “
A Gold-Silicon Potential Fitted to the Binary Phase Diagram
,”
J. Phys.: Condens. Matter.
,
22
(
5
), p.
055401
.
21.
Kim
,
J. H.
,
Yang
,
G.
,
Yang
,
S.
, and
Weiss
,
A. H.
, 2001, “
Study of the Growth and Stability of Ultra-Thin Films of Au Deposited on Si (100) and Si (111)
,”
Surf. Sci.
,
475
(
1-3
), pp.
37
46
.
22.
Lyeo
,
H. K.
, and
Cahill
,
D. G.
, 2006, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B
,
73
(
14
), p.
144301
.
23.
Lee
,
B.-J.
, 2007, “
A Modified Embedded Atom Method Interatomic Potential for Silicon
,”
CALPHAD: Comput. Coupling Phase Diagrams Thermochem.
,
31
(
1
), pp.
95
104
.
24.
Plimpton
,
S.
, 1995, “
Fast Parallel Algorithms for Short-Range Molecular-Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
25.
Lee
,
B.-J.
,
Shim
,
J.-H.
, and
Baskes
,
M. I.
, 2003, “
Semiempirical Atomic Potentials for the fcc Metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb Based on First and Second Nearest- Neighbor Modified Embedded Atom Method
,”
Phys. Rev. B
,
68
(
14
), p.
144112
.
26.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
, 2002, “
Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity
,”
Phys. Rev. B
,
65
(
14
), p.
144306
.
27.
Baskes
,
M. I.
,
Nelson
,
J. S.
, and
Wright
,
A. F.
, 1989, “
Semiempirical Modified Embedded-Atom Potentials for Silicon and Germanium
,”
Phys. Rev. B
,
40
(
9
), pp.
6085
6100
.
28.
Daw
,
M. S.
, and
Baskes
,
M. I.
, 1983, “
Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals
,”
Phys. Rev. Lett.
,
50
(
17
), pp.
1285
1288
.
29.
Baskes
,
M. I.
, 1992, “
Modified Embedded-Atom Potentials for Cubic Materials and Impurities
,”
Phys. Rev. B
,
46
(
5
), pp.
2727
2742
.
30.
Lee
,
B.-J.
, and
Baskes
,
M. I.
, 2000, “
Second Nearest-Neighbor Modified Embedded-Atom-Method Potential
,”
Phys. Rev. B
,
62
(
13
), pp.
8564
8567
.
31.
Rose
,
J. H.
,
Smith
,
J. R.
,
Guinea
,
F.
, and
Ferrante
,
J.
, 1984, “
Universal Features of the Equation of State of Metals
,”
Phys. Rev. B
,
29
(
6
), pp.
2963
2969
.
32.
Cruz
,
C. A.
,
Termentzidis
,
K.
,
Kleber
,
X.
, and
Chantrenne
,
P.
, 2011, “
Molecular Dynamics simulations for the Prediction of Thermal Conductivity of Bulk Silicon and Silicon Nanowires: Influence of Interatomic Potentials and Boundary Conditions
,”
J. Appl. Phys.
,
110
(
3
), p.
034309
.
33.
Broido
,
D. A.
,
Ward
,
A.
, and
Mingo
,
N.
, 2005, “
Lattice Thermal Conductivity of Silicon From Empirical Interatomic Potentials
,”
Phys. Rev. B
,
72
(
1
), p.
014308
.
34.
Ryu
,
S.
,
Weinberger
,
C. R.
,
Baskes
,
M. I.
, and
Cai
,
W.
, 2009, “
Improved Modified embedded-Atom Method Potentials for Gold and Silicon
,”
Modelling Simul. Mater. Sci. Eng.
,
17
(
7
), p.
075008
.
35.
Justo
,
J. F.
,
Bazant
,
M. Z.
,
Kaxiras
,
E.
,
Bulatov
,
V. V.
, and
Yip
,
S.
, 1998, “
Interatomic Potential for Silicon Defects and Disodered Phases
,”
Phys. Rev. B
,
58
(
5
), pp.
2539
2550
.
36.
Lenosky
,
T. J.
,
Sadigh
,
B.
,
Alonso
,
E.
,
Bulatov
,
V. V.
,
Rubia
,
T. D.
,
Kim
,
J.
,
Voter
,
A. F.
, and
Kress
,
J. D.
, 2000, “
Highly Optimized Empirical Potential Model of Silicon
,”
Modelling Simul. Mater. Sci. Eng.
,
8
(
6
), pp.
825
8441
.
37.
Heino
,
P.
, 2007, “
Dispersion and Thermal Resistivity in Silicon Nanofilms by Molecular Dynamics
,”
Eur. Phys. J. B.
,
60
(
2
), pp.
171
179
.
38.
Papanicolaou
,
N. I.
,
Lagaris
,
I. E.
, and
Evangelakis
,
G. A.
, 1995, “
Modification of Phonon Spectral Densities of the (001) Copper Surface due to Copper Adatoms by Molecular Dynamics Simulations
,”
Surf. Sci.
,
337
(
1–2
), pp.
L819
L824
.
39.
Flensburg
,
C.
, and
Stewart
,
R. F.
, 1999, “
Lattice Dynamical Debye-Waller Factor for Silicon
,”
Phys. Rev. B
,
60
(
1
), pp.
284
291
.
40.
Lynn
,
J. W.
,
Smith
,
H. G.
, and
Nicklow
,
R. M.
, 1973, “
Lattice Dynamics of Gold,”
Phys. Rev. B
,
8
(
8
), pp.
3493
3499
.
41.
Chantrenne
,
P.
,
Barrat
,
J. L.
,
Blase
,
X.
, and
Gale
,
J. D.
, 2005, “
An Analytical Model for the Thermal Conductivity of Silicon Nanostructures
,”
J. Appl. Phys.
,
97
(
10
), p.
104318
.
42.
Kazan
,
M.
,
Guisbiers
,
G.
,
Pereira
,
S.
,
Correia
,
M. R.
,
Masri
,
P.
, and
Bruyant
,
A.
, 2010, “
Thermal Conductivity of Silicon Bulk and Nanowires: Effects of Isotopic Composition, Phonon Confinement, and Surface Roughness
,”
J. Appl. Phys.
,
107
, p.
083503
.
43.
Touloukian
,
Y. S.
,
Taylor
,
R. E.
, and
Desai
,
P. D.
, 1975,
Thermal Expansion-Metallic Elements and Alloys
, Vol.
2
,
Plenum
,
New York
.
44.
Lee
,
B.-J.
,
Wirth
,
B. D.
,
Shim
,
J.-H.
,
Kwon
,
J.
,
Kwon
,
S. C.
, and
Hong
,
J.-H.
, 2005, “
Modified Embedded Atom Method Interatomic Potential for the Fe-Cu Alloy System and Cascade Simulations on Pure Fe and Fe-Cu Alloys
,”
Phys. Rev. B
,
71
(
18
), p.
184205
.
45.
Mattox
,
D. M.
, 1958,
Handbook of Physical Vapor Deposition (PVD) Processing
,
Noyes Publications
,
EUA, Park Ridge, NJ
.
46.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
, 1958, “
Free Energy of a Nonuniform System. I. Interfacial Free Energy
,”
J. Chem. Phys.
,
28
(
2
), pp.
258
267
.
47.
Hopkins
,
P. E.
,
Kassebaum
,
J. L.
, and
Norris
,
P.
, 2009, “
Effects of Electron-Scattering at Metal-Nonmetal Interfaces on Electron-Phonon Equilibration in Gold Systems
,”
J. App. Phys.
,
105
(
2
), p.
023710
.
48.
Komarov
,
P. L.
,
Burzo
,
M. G.
,
Kaytaz
,
G.
, and
Raad
,
P. E.
, 2003, “
Transient Thermo-Reflectance Measurements of the Thermal Conductivity and Interface Resistance of Metallized Natural and Isotopically-Pure Silicon
,”
Microelectron. J.
,
34
(
12
), pp.
1115
1118
.
49.
Stevens
,
R. J.
,
Smith
,
A. N.
, and
Norris
,
P. M.
, 2005, “
Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique
,”
ASME J. Heat Transfer
,
127
(
3
), pp.
315
322
.
You do not currently have access to this content.