This paper endeavors to complete a numerical research on forced convection steady heat transfer in power-law non-Newtonian fluids in a circle duct. Incompressible, laminar fluids are to be studied with a uniform wall temperature. A hydrodynamic entrance length is neglected which allows establishing a fully developed flow. The energy equation is solved by using a LU decomposition coupled with control volume technique based on finite difference method. Four thermal conductivity models are adopted in this paper, that is, constant thermal conductivity model, linear thermal conductivity varying with temperature, thermal conductivity varying as a function of velocity gradient, and thermal conductivity varying as a function of temperature gradient. The results are compared with each other and the physical characteristics for values of parameters are also discussed in details. It is shown that the heat transfer behaviors are strongly depending on the power-law index in all models. Comparisons of temperature and local Nusselt number between models are made. It reveals the increasing values of thermal conductivity parameter result in increasing the local Nusselt number when the thermal conductivity is a linear one. Furthermore, there is obvious difference in the local Nusselt number between the constant model and the power-law velocity-dependent model, but Nusselt number varies little from the constant model to the power-law temperature-dependent model.

References

1.
Schowalter
,
W. R.
, 1960, “
The Application of Boundary-Layer Theory to Power-Law Pseudoplastic Fluids: Similar Solutions
,”
Am. Inst. Chem. Eng.
,
6
, pp.
24
28
.
2.
Acrivos
,
A.
,
Shah
,
M. J.
, and
Petersen
,
E. E.
, 1960, “
Momentum and Heat Transfer in Laminar Boundary-Layer Flows of Non-Newtonian Fluids past External Surfaces
,”
Am. Inst. Chem. Eng. J.
,
6
, pp.
312
317
.
3.
Wang
,
T. Y.
, 1995, “
Mixed Convection from a Vertical Plate to Non-Newtonian Fluids With Uniform Surface Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
22
(
3
), pp.
369
380
.
4.
Wang
,
T. Y.
, 1995, “
Mixed Convection Heat Transfer From a Vertical Plate to Non-Newtonian Fluids
,”
Int. J. Heat Fluid Flow
,
16
(
1
), pp.
56
61
.
5.
Hady
,
F. M.
, 1995, “
Mixed Convection Boundary-layer Flow of Non-Newtonian Fluids on a Horizontal Plate
,”
Appl. Math. Comput.
,
68
, pp.
105
112
.
6.
Howell
,
T. G.
,
Jeng
,
D. R.
, and
De Witt
K. J.
, 1997, “
Momentum and Heat Transfer on a Continuous Moving Surface in Power Law Fluid
,”
Int. J. Heat Mass Transfer
,
40
, pp.
1853
1861
.
7.
Rao
,
J. H.
,
Jeng
,
D. R.
, and
De Witt
,
K. J.
, 1999, “
Momentum and Heat Transfer in a Power-law Fluid With Arbitrary Injection/Suction at a Moving Wall
,”
Int. Commun. Heat Mass Transfer
,
42
, pp.
2837
2847
.
8.
Gorla
,
R. S. R.
,
Pop
,
I.
, and
Lee
,
J. K.
, 1992, “
Convective Wall Plume in Power-law Fluid: Second-order Correction for the Adiabatic Wall
,”
Warme-und Stoffubertragung
,
27
, pp.
473
479
.
9.
Kumari
,
K.
,
Pop
,
I.
, and
Takhar
,
H. S.
, 1997, “
Free-convection Boundary-layer Flow of a Non-Newtonian Fluid Along a Vertical Wavy Surface
,”
Int. J. Heat Fluid Flow
,
18
(
6
), pp.
625
631
.
10.
Crosan
,
T.
, and
Pop
,
I.
, 2001, “
Free Convection Over a Vertical Flat Plate With a Variable Wall Temperature and Internal Heat Generation in a Porous Medium Saturated With a Non-Newtonian Fluid
,”
Tech. Mech.
,
4
, pp.
313
318
.
11.
Kays
,
W. M.
, 1966,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
, p.
362
.
12.
Arunachalam
,
M.
, and
Rajappa
,
N. R.
, 1978, “
Thermal Boundary Layer in Liquid Metals with Variable Thermal Conductivity
,”
Appl. Sci. Res
,
34
, pp.
179
187
.
13.
Chaim
,
T. C.
, 1998, “
Heat Transfer in a Fluid With Variable Thermal Conductivity Over a Linearly Stretching Sheet
,”
Acta Mech. Solida Sinica
,
129
, pp.
63
72
.
14.
Hossain
,
M. A.
,
Munir
,
M. S.
, and
Takhar
,
H. S.
, 2000, “
Natural Convection Flow of a Viscous Fluid About a Truncated Cone With Temperature Dependent Viscosity and Thermal Conductivity
,”
Acta Mech. Solida Sinica
,
140
, pp.
171
181
.
15.
Hossain
,
M. A.
,
Munir
,
M. S.
, and
Rees
,
D. A. S.
, 2000, “
Flow of Viscous Incompressible Fluid With Temperature Dependent Viscosity and Thermal Conductivity Past a Permeable Wedge With Uniform Surface Heat Flux
,”
Int. J. Therm. Sci.
,
39
, pp.
635
644
.
16.
Hossain
,
M. A.
,
Munir
,
M. S.
, and
Pop
,
I.
, 2001, “
Natural Convection With Variable Viscosity and Thermal Conductivity From a Vertical Wavy Cone
,”
Int. J. Therm. Sci.
,
40
, pp.
437
443
.
17.
Salem
,
A. M.
, 2007, “
Variable Viscosity and Thermal Conductivity Effects on MHD Flow and Heat Transfer in Viscoelastic Fluid Over a Stretching Sheet
,”
Phy. Lett. A
,
369
, pp.
315
322
.
18.
18
Abel
,
M. S.
,
Siddheshwar
,
P. G.
,
Mahesha
,
N.
, 2009, “
Effects of Thermal Buoyancy and Variable Thermal Conductivity on the MHD Flow and Heat Transfer in a Power-law Fluid Past a Vertical Stretching Sheet in the Presence of a Non-Uniform Heat Source
,”
Int. J. Non-Linear Mech.
,
44
, pp.
1
12
.
19.
Pop
,
I.
,
Rashidi
,
M.
, and
Gorla
,
R. S. R.
, 1991, “
Mixed Convection to Power-law Type non-Newtonian Fluids From a Vertical Wall
,”
Polym.-Plast. Technol. Eng.
,
30
, pp.
47
66
.
20.
Pop
,
I.
, 1993, “
Boundary Layer Flow at a Three-dimensional Stagnation Point in Power-law Non-Newtonian Fluids
,”
Int. J. Heat Fluid Flow
,
14
, pp.
408
412
.
21.
Ece
,
M. C.
, and
Buyuk
,
E.
, 2002, “
Similarity Solutions for Free Convection to Power-law Fluids from a Heated Vertical Plate
,”
Appl. Math. Lett.
,
15
, pp.
1
5
.
22.
Zheng
,
L. C.
,
Zhang
,
X. X.
, and
Lu
,
C. Q.
, 2006, “
Heat Transfer of Power Law Non-Newtonian
,”
Chin. Phys. Lett.
,
23
, pp.
3301
3304
.
23.
Zheng
,
L. C.
,
Zhang
,
X. X.
, and
Ma
,
L. X.
, 2008, “
Fully Developed Convective Heat Transfer for Power Law Fluids in a Circular Tube
,”
Chin. Phys. Lett.
,
25
, pp.
195
197
.
24.
Li
,
B. T.
,
Zheng
,
L. C.
, and
Zhang
,
X. X.
, 2010, “
Numerical Methods for Solving Energy Equations of Dilatant Fluid Flow
,”
The 3rd International Conference on Computational Sciences and Optimization
, Huangshan, Anhui, China,
Vol. 1
, pp.
11
14
.
25.
Li
,
B. T.
,
Zheng
,
L. C.
, and
Zhang
,
X. X.
, 2010, “
Numerical Investigation on Heat Transfer of Power Law Fluids in a Pipe With Constant Wall Temperature
,” World Congress on Engineering, London, UK, Vol. 3, pp.
1864
1866
.
26.
Li
,
B. T.
,
Zheng
,
L. C.
, and
Zhang
,
X. X.
, 2010, “
Unsteady Forced Convection Heat Transfer for Power Law Fluids in a Pipe
,”
The International Heat Transfer Conference
, Washington DC.
27.
Barletta
,
A.
, 1997, “
Fully Developed Laminar Forced Convection in Circular Ducts for Power-law Fluids with Viscous Dissipation
,”
Int. J. Heat Mass Transfer
,
40
, pp.
15
26
.
28.
Kreith
,
F.
, 2000,
The CRC Handbook of Thermal Engineering
,
CRC Press & Springer, Heidelberg
,
Germany
, Chap. III, p.
58
.
29.
Kim
,
S. C.
,
Irvine
, Jr.
,
Lee
,
J. S.
,
Kim
,
C. H.
, and
Kim
,
T. H.
, 1995, “
Graetz Problem Solutions for a Modified Power Law Fluid Over a Wide Range of Shear Rate
,”
J. Rheol.
,
7
(
1
), pp.
35
41
.
You do not currently have access to this content.