The near-wall turbulent heat transport of the three orthogonal directions was directly solved for the Prandtl numbers ranging from 0.025 to 5.0 to validate the algebraic models of the turbulent heat flux. Two kinds of thermal situations were considered in the low Reynolds number turbulent flow: (a) the case with a uniform heat flux in the spanwise direction (UHF) and (b) the case with the mean spanwise temperature gradient (STG). Among the turbulent heat flux models tested, the model of Rogers preferably predicted over the treated range of the Prandtl numbers, but it failed to reproduce the low Prandtl number effects very accurately. This paper revealed that the coefficient of the Rotta model can be modified to include the low Prandtl number effects by means of the correlation between the exact coefficient suggested by DNS and the Prandtl number.

References

1.
Black
,
A. W.
, and
Sparrow
,
E. M.
, 1967, “
Experiments on Turbulent Heat Transfer in a Tube With Circumferentially Varying Thermal Boundary Conditions
,”
ASME J. Heat Transfer
,
89
, pp.
258
268
.
2.
Quarmby
,
A.
, and
Quirk
,
R.
, 1972, “
Measurements of the Radial and Tangential Eddy Diffusivities of Heat and Mass in Turbulent Flow in a Plain Tube
,”
Int. J. Heat Mass Transfer
,
15
, pp.
2309
2327
.
3.
Maekawa
,
H.
,
Kawada
,
M.
,
Kobayashi
,
M.
, and
Yamaguchi
,
H.
, 1991, “
An Experimental Study on the Spanwise Eddy Diffusivity of Heat in a Flat-Plate Turbulent Boundary Layer
,”
Int. J. Heat Mass Transfer
,
34
, pp.
1991
1998
.
4.
Kawada
,
Y.
,
Maekawa
,
H.
,
Kobayashi
,
M.
, and
Saitoh
,
H.
, 1992, “
The Effect of Free-Stream Turbulence on Spanwise Eddy Diffusivity of Heat in a Flat-Plate Turbulent Boundary Layer
,”
JSME Int. J. Ser. 2
,
4
, pp.
573
579
.
5.
Matsubara
,
K.
,
Kobayashi
,
M.
, and
Maekawa
,
H.
, 1998, “
Direct Numerical Simulation of a Turbulent Channel Flow With a Linear Spanwise Mean Temperature Gradient
,”
Int. J. Heat Mass Transfer
,
41
, pp.
3627
3634
.
6.
Matsubara
,
K.
,
Kobayashi
,
M.
,
Sakai
,
T.
, and
Suto
,
H.
, 2001, “
A Study on Spanwise Heat Transfer in a Turbulent Channel Flow—Education of Coherent Structures by a Conditional Sampling Technique
,”
Int. J. Heat Fluid Flow
,
22
, pp.
213
219
.
7.
Kasagi
,
N.
,
Kuroda
,
A.
, and
Hirata
,
M.
, 1989, “
Numerical Investigation of Near-Wall Turbulent Heat Transfer Taking Into Account the Unsteady Heat Conduction in the Solid Wall
,”
ASME J. Heat Transfer
,
111
, pp.
385
392
.
8.
Kim
,
J.
, and
Moin
,
P.
, 1985, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
59
, pp.
308
323
.
9.
Kawamura
,
H.
,
Abe
,
H.
, and
Matsuo
,
Y.
, 1999, “
DNS of Turbulent Heat Transfer in Channel Flow With Respect to Reynolds and Prandtl Number Effects
,”
Int. J. Heat Fluid Flow
,
20
, pp.
196
207
.
10.
Kasagi
,
N.
,
Tomita
,
Y.
, and
Kuroda
,
A.
, 1992, “
Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow
,”
ASME J. Heat Transfer
,
114
, pp.
598
606
.
11.
Kader
,
B. A.
, 1981, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. Heat Mass Transfer
,
24
, pp.
1541
1544
.
12.
Launder
,
B. E.
, 1978, “
Heat and Mass Transport
,”
Topics in Applied Physics
,
P.
Bradshaw
, ed.,
Springer
,
Berlin
, pp.
231
287
.
13.
Rogers
,
M. M.
,
Mansour
,
N. N.
, and
Reynolds
,
W. C.
, 1989, “
An Algebraic Model for the Turbulent Flux of a Passive Scalar
,”
J. Fluid Mech.
,
203
, pp.
77
101
.
14.
Rotta
,
J. L.
, 1951, “
Statistische Theorie Nichthomogner Turbulenz
,”
Z. Phys.
,
129
, pp.
547
572
.
15.
Lumley
,
J. L.
, 1978, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
,
18
, pp.
123
176
.
16.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
, 1975, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
, pp.
537
566
.
You do not currently have access to this content.