In this paper, an effective and computationally efficient proper orthogonal decomposition (POD) based reduced order modeling approach is presented, which utilizes selected sets of observed thermal sensor data inside the data centers to help predict the data center temperature field as a function of the air flow rates of computer room air conditioning (CRAC) units. The approach is demonstrated through application to an operational data center of 102.2 m2 (1100 square feet) with a hot and cold aisle arrangement of racks cooled by one CRAC unit. While the thermal data throughout the facility can be collected in about 30 min using a 3D temperature mapping tool, the POD method is able to generate temperature field throughout the data center in less than 2 s on a high end desktop personal computer (PC). Comparing the obtained POD temperature fields with the experimentally measured data for two different values of CRAC flow rates shows that the method can predict the temperature field with the average error of 0.68 °C or 3.2%. The maximum local error is around 8 °C, but the total number of points where the local error is larger than 1 °C, is only ∼6% of the total domain points.

References

1.
ASHRAE
, 2009,
Thermal Guidelines for Data Processing Equipment,
2nd ed.,
American Society of Heating, Refrigeration and Air-Conditioning Engineers
,
Atlanta, GA
.
2.
Samadiani
,
E.
,
Joshi
,
Y.
, and
Mistree
,
F.
, 2008, “
The Thermal Design of A Next Generation DataCenter: A Conceptual Exposition
,”
J. Electron. Packag.
,
130
(
4
), pp.
041104
.
3.
Lawrence Berkeley National Laboratory and Rumsey Engineers
, 2002, “
Data Center Energy Benchmarking Case Study
,” http://datacenters.lbl.gov/http://datacenters.lbl.gov/.
4.
Kang
,
S.
,
Schmidt
,
R.
,
Kelkar
,
K. M.
,
Radmehr
,
A.
, and
Patankar
,
S. V.
, 2001, “
A Methodology for the Design of Perforated Tiles in a Raised Floor Data Center Using Computational Flow Analysis
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
177
183
.
5.
Patel
,
C.
,
Bash
,
C.
,
Belady
,
C.
,
Stahl
,
L.
, and
Sullivan
,
D.
, 2001, “
Computational Fluid Dynamics Modeling of High Compute Density Data Centers to Assure System Inlet Air Specifications
,”
Proceedings of ASME IPACK’01
,
Kauai, Hawaii
,
ASME
, IPACK2001-15622.
6.
Schmidt
,
R.
,
Karki
,
K. C.
,
Kelkar
,
K. M.
,
Radmehr
,
A.
, and
Patankar
,
S. V.
, 2001, “
Measurements and Predictions of the Flow Distribution Through Perforated Tiles in Raised Floor Data Centers
,”
Proceedings of ASME InterPACK01
,
Kauai, Hawaii
, IPACK2001-15728.
7.
Rambo
,
J.
, and
Joshi
,
Y.
, 2003, “
Multi-Scale Modeling of High Power Density Data Centers
,”
Proceedings of ASME InterPACK03
,
Kauai, Hawaii
, InterPack2003-35297.
8.
Schmidt
,
R.
,
Karki
,
K. C.
, and
Patankar
,
S. V.
, 2004, “
Raised-Floor Data Center: Perforated Tile Flow Rates for Various Tile Layouts
,”
Proceedings of ITHERM 2004—Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Las Vegas
,
NV
.
9.
VanGilder
,
J. W.
, and
Schmidt
,
R.
, 2005, “
Airflow Uniformity Through Perforated Tiles in a Raised-Floor Data Center
,”
Proceedings of ASME InterPACK
,
San Francisco, CA
, IPACK2005-73375, 2005.
10.
Radmehr
,
A.
,
Schmidt
,
R.
,
Karki
,
K. C.
, and
Patankar
,
S. V.
, 2005, “
Distributed Leakage Flow in Raised-Floor Data Centers
,”
Proceedings of ASME InterPACK
,
San Francisco, CA
, IPACK2005-73273.
11.
Karki
,
K. C.
,
Radmehr
,
A.
, and
Patankar
,
S. V.
, 2003, “
Use of Computational Fluid Dynamics for Calculating Flow Rates Through Perforated Tiles in Raised-Floor Data Centers
,”
HVAC&R Res.
,
9
(
2
), pp.
153
166
.
12.
Samadiani
,
E.
,
Rambo
,
J.
, and
Joshi
,
Y.
, 2010, “
Numerical Modeling of Perforated Tile Flow Distribution in a Raised-Floor Data Center
,”
J. Electron. Packag.
,
132
(
2
), pp.
021002
.
13.
Bhopte
,
S.
,
Agonafer
,
D.
,
Schmidt
,
R.
, and
Sammakia
,
B.
, 2005, “
Optimization of Data Center Room Layout to Minimize Rack Inlet Air Temperature
,”
Proceedings of ASME InterPACK
,
San Francisco, CAl
, IPACK2005-73027.
14.
Patel
,
C. D.
,
Sharma
,
R.
,
Bash
,
C.
, and
Beitelmal
,
M.
, 2002, “
Thermal Considerations in Cooling of Large Scale High Compute Density Data Centers
,”
Proceedings of ITHERM 2002—Eight Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
San Diego, CA
, pp.
767
776
.
15.
Iyengar
,
M.
,
Schmidt
,
R.
,
Sharma
,
A.
,
McVicker
,
G.
,
Shrivastava
,
S.
,
Sri-Jayantha
,
S.
,
Amemiya
,
Y.
,
Dang
,
H.
,
Chainer
,
T.
, and
Sammakia
,
B.
, 2005, “
Thermal Characterization of Non-Raised Floor Air Cooled Data Centers Using Numerical Modeling
,”
Proceedings of ASME InterPACK05
,
San Francisco, CA
, IPACK2005-73387.
16.
Schmidt
,
R.
, and
Cruz
,
E.
, 2004, “
Cluster of High Powered Racks within a Raised Floor Computer Data Center: Effects of Perforated Tiles Flow Distribution on Rack Inlet Air Temperature
,”
J. Electron. Packag.
,
126
(
4
), p.
510
518
.
17.
Hamann
,
H.
,
Lacey
,
J.
, O’
Boyle
,
M.
,
Schmidt
,
R. R.
, and
Iyengar
,
M.
, 2008, “
Rapid Three Dimensional Thermal Characterization of Large Scale Computing Facilities
IEEE Trans. Compon. Packag. Technol.
,
31
(
2
), pp.
444
448
.
18.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
, 1996,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
University of Cambridge
,
Cambridge, UK
.
19.
Rolander
,
N.
, 2005, “
An Approach for the Robust Design of Air Cooled Data Center Server Cabinets
,” M.S. thesis, Georgia Institute of Technology, Atlanta, GA.
20.
Rambo
,
J.
, and
Joshi
,
Y.
, 2007, “
Reduced-Order Modeling of Turbulent Forced Convection With Parametric Conditions
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
539
551
.
21.
Rambo
,
J.
, 2006, “
Reduced-Order Modeling of Multiscale Turbulent Convection: Application to Data Center Thermal Management
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
22.
Ravindran
,
S. S.
, 2002, “
Adaptive Reduced-Order Controllers for a Thermal Flow Using Proper Orthogonal Decomposition
,”
SIAM J. Sci. Comput.
,
23
(
6
), pp.
1924
1942
.
23.
Park
,
H. M.
, and
Cho
,
D. H.
, 1996, “
The Use of the Karhunen–Loeve Decomposition for the Modeling of Distributed Parameter Systems
”,
Chem. Eng. Sci.
,
51
(
1
), pp.
81
98
.
24.
Park
,
H. M.
, and
Cho
,
D. H.
, 1996, “
Low Dimensional Modeling of Flow Reactors
,”
Int. J. Heat Mass Transfer
,
39
(
16
), pp.
3311
3323
.
25.
Sirovich
,
L.
, and
Park
,
H. M.
, 1990, “
Turbulent Thermal Convection in a Finite Domain: Part I.Theory
,”
Phys. Fluids
,
2
(
9
), pp.
1649
1657
.
26.
Sirovich
,
L.
, and
Park
,
H. M.
, 1990, “
Turbulent Thermal Convection in a Finite Domain: Part II. Numerical Results
,”
Phys. Fluids
,
2
(
9
), pp.
1649
1657
.
27.
Tarman
,
I. H.
, and
Sirovich
,
L.
, 1998, “
Extensions of Karhunen–Loeve Based Approximations of Complicated Phenomena
,”
Comput. Methods Appl. Mech. Eng.
,
155
, pp.
359
368
.
28.
Park
,
H. M.
, and
Li
,
W. J.
, 2002, “
Boundary Optimal Control of Natural Convection by Means of Mode Reduction
,”
J. Dyn. Syst. Meas. Control
,
124
, pp.
47
54
.
29.
Ding
,
P.
,
Wu
,
X.-H.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
, 2008, “
A Fast and Efficient Method for Predicting Fluid Flow and Heat Transfer Problems
,”
J. Heat Transfer
,
130
(
3
), pp.
032502
.
30.
Ly
,
H. V.
, and
Tran
,
H. T.
, 2001, “
Modeling and Control of Physical Processes Using Proper Orthogonal Decomposition
,”
Math. Comput. Model.
,
33
, pp.
223
236
.
31.
Strang
,
G.
, 1988,
Linear Algebra and its Applications
,
Thomson Learning
.
32.
Samadiani
,
E.
, and
Joshi
,
Y.
, 2010, “
Multi-Parameter Model Reduction in Multi-Scale Convective Systems
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2193
2205
.
33.
Samadiani
,
E.
, and
Joshi
,
Y.
, 2010, “
Proper Orthogonal Decomposition for Reduced Order Thermal Modeling of Air Cooled Data Centers
,”
J. Heat Transfer
,
132
, pp.
071402
.
You do not currently have access to this content.