Carbon nanotube- or/and graphite-filled polymer composites were synthesized by using simple mixing and drying methods, and their thermal conductivities and structures were characterized by using a steady-state method (ASTM D5470) and scanning and transmission electron microscopies. In order to investigate the influence of synthesis conditions on the thermal conductivity of composites, various concentrations of multiwall carbon nanotubes, graphites, surfactants, and polymer matrix materials as well as two different nanoparticles and solvents were tested. Our composites containing both nanotubes (25 wt. %) and graphites (25 wt. %) with sodium dodecyl benzene sulfonate (SDBS) as a dispersant showed the highest thermal conductivity, ∼1.8 W/m-K at room temperature. The highest conductivity from nanotube/graphite mixtures would be from good adhesion and less voids between nanotubes and polymers as well as excellent thermal conduction from graphite sheets. The thermal conductivities of the composites have been calculated as a function of carbon nanotube concentrations by using a model based on the Maxwell’s effective medium theory, and the most effective method of improving thermal conductivity was suggested.

References

1.
Chung
,
D. D. L.
, 2001, “
Thermal Interface Materials
,”
J. Mater. Eng. Perform.
,
10
, pp.
56
59
.
2.
Gwinn
,
J. P.
, and
Webb
,
R. L.
, 2003, “
Performance and Testing of Thermal Interface Materials
,”
Microelectron. J.
,
34
, pp.
215
222
.
3.
Prasher
,
R.
, 2006, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
, pp.
1571
1586
.
4.
Narumanchi
,
S.
,
Mihalic
,
M.
,
Kelly
,
K.
, and
Eesley
,
G.
, 2008, “
Thermal Interface Materials for Power Electronics Applications
,”
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, pp.
395
404
.
5.
Howe
,
T. A
.,
Leong
,
C. K.
, and
Chung
,
D. D. L.
, 2006, “
Comparative Evaluation of Thermal Interface Materials for Improving the Thermal Contact Between an Operating Computer Microprocessor and Its Heat Sink
,”
J. Electron. Mater.
,
35
, pp.
1628
1635
.
6.
Liu
,
J.
,
Michel
,
B.
,
Rencz
,
M.
,
Tantolin
,
C.
,
Sarno
,
C.
,
Miessners
,
R.
,
Schuetts
,
K. V.
,
Tang
,
X. H.
,
Demoustier
,
S.
, and
Ziaei
,
A.
, 2008, “
Recent Progress of Thermal Interface Material Research—An Overview
,”
14th International Workshop on Thermal Investigation of Ics and Systems
, pp.
156
162
.
7.
Yu
,
C.
,
Kim
,
Y. S.
,
Kim
,
D.
, and
Grunlan
,
J. C.
, 2008, “
Thermoelectric Behavior of Segregated-Network Polymer Nanocomposites
,”
Nano Lett.
,
8
, pp.
4428
4432
.
8.
Debelak
,
B.
, and
Lafdi
,
K.
, 2007, “
Use of Exfoliated Graphite Filler to Enhance Polymer Physical Properties
,”
Carbon
,
45
, pp.
1727
1734
.
9.
Hu
,
X. J.
,
Jiang
,
L. N.
, and
Goodson
,
K. E.
, 2004, “
Thermal Conductance Enhancement of Particle-Filled Thermal Interface Materials Using Carbon Nanotube Inclusions
,”
Itherm 2004
, Vol.
1
, pp.
63
69
.
10.
Sarvar
,
F.
,
Whalley
,
D. C.
, and
Conway
,
P. P.
, 2006, “
Thermal Interface Materials—A Review of the State of the Art
,” ESTC 2006,
Proceedings of the 1st Electronics Systemintegration Technology Conference
, Vols.
1 and 2
, pp.
1292
1302
.
11.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
, 2007, “
Dense, Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon., Packag. Technol.
,
30
, pp.
92
100
.
12.
Yu
,
A. P.
,
Ramesh
,
P.
,
Itkis
,
M. E.
,
Bekyarova
,
E.
, and
Haddon
,
R. C.
, 2007, “
Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials
,”
J. Phys. Chem. C
,
111
, pp.
7565
7569
.
13.
Kelly
,
B. T.
, 1981,
Physics of Graphite
,
Applied Science
,
London
.
14.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
, 2001, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
,
8721
,
215502
.
15.
Yu
,
C.
,
Shi
,
L.
,
Yao
,
Z.
,
Li
,
D. Y.
, and
Majumdar
,
A.
, 2005, “
Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube
,”
Nano Lett.
,
5
, pp.
1842
1846
.
16.
Cheng
,
H. M.
,
Du
,
J. H.
, and
Bai
,
J.
, 2007, “
The Present Status and Key Problems of Carbon Nanotube Based Polymer Composites
,”
Express Polym. Lett.
,
1
, pp.
253
273
.
17.
Huang
,
H.
,
Liu
,
C. H.
,
Wu
,
Y.
, and
Fan
,
S. S.
, 2005, “
Aligned Carbon Nanotube Composite Films for Thermal Management
,”
Adv. Mater.
,
17
, pp.
1652
1656
.
18.
Luo
,
X. C.
,
Chugh
,
R.
,
Biller
,
B. C.
,
Hoi
,
Y. M.
, and
Chung
,
D. D. L.
, 2002, “
Electronic Applications of Flexible Graphite
,”
J. Electron. Mater.
,
31
, pp.
535
544
.
19.
Yu
,
C.
,
Ryu
,
Y.
,
Yin
,
L.
, and
Yang
,
H.
, 2011, “
Modulating Electronic Transport Properties of Carbon Nanotubes and Improving the Thermoelectric Power Factor via Nanoparticle Decoration
,”
ACS Nano
,
5
, pp.
1297
1303
.
20.
Kim
,
D.
,
Kim
,
Y.
,
Choi
,
K.
,
Grunlan
,
J. C.
, and
Yu
,
C.
, 2010, “
Improved Thermoelectric Behavior of Nanotube-Filled Polymer Composites With Poly(3,4-ethylenedioxythiophene) Poly(styrenesulfonate)
,”
ACS Nano
,
4
, pp.
513
523
.
22.
Kim
,
Y. S.
,
Kim
,
D.
,
Martin
,
K. J.
,
Yu
,
C.
, and
Grunlan
,
J. C.
, 2010, “
Influence of Stabilizer Concentration on Transport Behavior and Thermopower of Carbon Nanotube Filled Latex-Based Composites
,”
Macromol. Mater. Eng.
,
295
, pp.
431
436
.
23.
Yu
,
C.
,
Choi
,
K.
,
Yin
,
L.
, and
Grunlan
,
J. C.
, “
Light-Weight Flexible Carbon Nanotube Based Organic Composites With Large Thermoelectric Power Factors
,”
ACS Nano
(in press).
24.
Ayala
,
P.
,
Freire
,
F. L.
,
Gu
,
L.
,
Smith
,
D. J.
,
Solorzano
,
I. G.
,
Macedo
,
D. W.
,
Vander Sande
,
J. B.
,
Terrones
,
H.
,
Rodriguez-Manzo
,
J.
, and
Terrones
,
M.
, 2006, “
Decorating Carbon Nanotubes With Nanostructured Nickel Particles via Chemical Methods
,”
Chem. Phys. Lett.
,
431
, pp.
104
109
.
25.
Fu
,
Q.
,
Weinberg
,
G.
, and
Su
,
D. S.
, 2008, “
Selective Filling of Carbon Nanotubes With Metals by Selective Washing
,”
New Carbon Mater.
,
23
, pp.
17
20
.
27.
Wang
,
J.
,
Fruchtl
,
D.
, and
Blau
,
W. J.
, 2010, “
The Importance of Solvent Properties for Optical Limiting of Carbon Nanotube Dispersions
,”
Opt. Commun.
,
283
, pp.
464
468
.
28.
Rangari
,
V. K.
,
Bhuyan
,
M. S.
, and
Jeelani
,
S.
, 2010, “
Microwave Processing and Characterization of EPON 862/CNT Nanocomposites
,”
Mater. Sci. Eng. B.
,
168
, pp.
117
121
.
29.
Maxwell
,
J. C.
, 1881,
A Treatise on Electricity and Magnetism
,
Claredon
,
Oxford
.
30.
Eapen
,
J.
,
Rusconi
,
R.
,
Piazza
,
R.
, and
Yip
,
S.
, 2010, “
The Classical Nature of Thermal Conduction in Nanofluids
,”
ASME Trans. J. Heat Transfer
,
132
,
102402
.
31.
Nan
,
C.-W.
,
Shi
,
Z.
, and
Lin
,
Y.
, 2003, “
A Simple Model for Thermal Conductivity of Carbon Nanotube-Based Composites
,”
Chem. Phys. Lett.
,
375
, pp.
666
669
.
32.
Chu
,
K.
,
Wu
,
Q. Y.
,
Jia
,
C. C.
,
Liang
,
X. B.
,
Nie
,
J. H.
,
Tian
,
W. H.
,
Gai
,
G. S.
, and
Guo
,
H.
, 2010, “
Fabrication and Effective Thermal Conductivity of Multi-Walled Carbon Nanotubes Reinforced Cu Matrix Composites for Heat Sink Applications
,”
Compos. Sci. Technol.
,
70
, pp.
298
304
.
33.
Keblinski
,
P.
,
Prasher
,
R.
, and
Eapen
,
J.
, 2008, “
Thermal Conductance of Nanofluids: Is the Controversy Over?
,”
J. Nanopart. Res.
,
10
, pp.
1089
1097
.
35.
Potts
,
J. R.
,
Dreyer
,
D. R.
,
Bielawski
,
C. W.
, and
Ruoff
,
R. S.
, 2011, “
Graphene-Based Polymer Nanocomposites
,”
Polymer
,
52
, pp.
5
25
.
37.
Biercuk
,
M. J.
,
Llaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
,
Johnson
,
A. T.
, and
Fischer
,
J. E.
, 2002, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
,
80
, pp.
2767
.
38.
Gonnet
,
P.
,
Liang
,
Z.
,
Choi
,
E. S.
,
Kadambala
,
R. S.
,
Zhang
,
C.
,
Brooks
,
J. S.
,
Wang
,
B.
, and
Kramer
,
L.
, 2006, “
Thermal Conductivity of Magnetically Aligned Carbon Nanotube Buckypapers and Nanocomposites
,”
Curr. Appl. Phys.
,
6
, pp.
119
122
.
You do not currently have access to this content.