Concurrent flame spread over methanol pool surface under atmospheric conditions and normal gravity has been numerically investigated using a transient, two-phase, reacting flow model. The average flame spread velocities for different concurrent air velocities predicted using the model are quite close to the experimental data available in the literature. As the air velocity is increased, the fuel consumption rate increases and aids in faster flame spread process. The flame initially anchors around the leading edge of the pool and the flame tip spreads over the pool surface. The rate of propagation of flame tip along the surface is seen to be steady without fluctuations. The flame spread velocity is found to be nonuniform as the flame spreads along the pool surface. The flame spread velocity is seen to be higher initially. It then decreases up to a point when the flame has propagated to around 40% to 50% of the pool length. At this position, a secondary flame anchoring point is observed, which propagates toward the trailing edge of the pool. As a result, there is an increasing trend observed in the flame spread velocity. As the air velocity is increased, the initial flame anchoring point moves downstream of the leading edge of the fuel pool. The variations of interface quantities depend on the initial flame anchoring location and the attainment of thermodynamic equilibrium between the liquid- and gas-phases.

References

1.
Burgoyne
,
J. H.
,
Roberts
,
A. F.
, and
Quinton
,
P.
, 1968,
“The Spread of Flame Across a Liquid Surface. I. The Induction Period. II. Steady-State Conditions. III. A Theoretical Model,”
Proc. R. Soc. A
,
308
, pp.
55
68
.
2.
Glassman
,
I.
, and
Hansel
,
J. G.
, 1968,
“Some Thoughts and Experiments on Liquid Fuel Spreading, Steady Burning and Ignitability in Quiescent Atmospheres,”
Fire Res. Abstr. Rev.
,
10
, pp.
217
234
.
3.
Sirignano
,
W. A.
, and
Glassman
,
I.
, 1970,
“Flame Spreading Above Liquid Fuels: Surface-Tension Driven Flows,”
Combust. Sci. Technol.
,
1
(
4
), pp.
307
312
.
4.
Sirignano
,
W. A.
, 1972,
“A Critical Discussion of Theories of Flame Spread Across Solid and Liquid Fuels,”
Combust. Sci. Technol.
,
6
(
1–2
), pp.
95
105
.
5.
Ray
,
S. R.
,
Fernandez-Pello
,
A. C.
, and
Glassman
,
I.
, 1980,
“A Study of the Heat Transfer Mechanisms in Horizontal Flame Propagation,”
J. Heat Transfer
,
102
(
2
), pp.
357
364
.
6.
Akita
,
K.
, 1973,
“Some Problems of Flame Spread Along a Liquid Surface,”
Proc. 14th Int. Symp. on Combustion,
Combustion Institute
,
Pittsburgh, PA
, pp.
1075
1083
.
7.
Akita.
K.
, and
Fujiwara
,
O.
, 1971,
“Pulsating Flame Spread Along the Surface of Liquid Fuels,”
Combust. Flame
,
17
(
2
), pp.
268
269
.
8.
Glassman
,
I.
,
Dryer
,
F. L.
, 1980,
“Flame Spreading Across Liquid Fuels,”
Fire Saf. J.
,
3
, pp.
123
128
.
9.
Ross
,
H. D.
, 1994,
“Ignition of and Flame Spread Over Laboratory-Scale Pools of Pure Liquid Fuels,”
Prog. Energy Combust. Sci.
,
20
(
1
), pp.
17
63
.
10.
Wichman
,
I. S.
, and
Baum
,
H. R.
, 1998,
“An Integral Analysis of Two Simple Model Problems of Wind-Aided Flame Spread,”
Trans. ASME J. Heat Transfer
,
110
(
2
), pp.
437
442
.
11.
Hirano
,
T.
,
Suzuki
,
T.
,
Mashiko
,
I.
, and
Tanabe
,
N.
, 1980,
“Gas Movements in Front of Flames Propagating Across Methanol,”
Combust. Sci. Technol.
,
22
(
1–2
), pp.
83
91
.
12.
Suzuki
,
T.
, and
Hirano
,
T.
, 1982,
“Flame Propagation Across a Liquid Ffuel in an Air Stream,”
Proc. 19th Int. Symp. on Combustion
,
Combustion Institute
,
Pittsburgh, PA
, pp.
877
884
.
13.
Takeno
,
K.
, and
Hirano
,
T.
, 1986,
“Flame Spread Over Porous Solids Soaked With a Combustible Liquid,”
Proc. 21st Int. Symp. on Combustion
,
Combustion Institute
,
Pittsburgh, PA
, pp.
75
81
.
14.
Takeno
,
K.
, and
Hirano
,
T.
, 1989,
“Behavior of Combustible Liquid Soaked in Porous Beds During Flame Spread,”
Proc. 22nd Int. Symp. on Combustion
,
Combustion Institute
,
Pittsburgh, PA
, pp.
1223
1230
.
15.
Ito
,
A.
,
Masuda
,
D.
, and
Saito
,
K.
, 1991,
“A Study of Flame Spread Over Alcohols Using Holographic Interferometry,”
Combust. Flame
,
83
(
3–4
), pp.
375
389
.
16.
Konishi
,
T.
,
Ito
,
A.
,
Kudou
,
Y.
, and
Saito
,
K.
, 2002,
“The Role of a Flame-Induced Liquid Surface Wave on Pulsating Flame Spread,”
Proc. Combust. Inst. 29, pp.267–272.
17.
Ito
,
A.
,
Narumi
,
A.
,
Konishi
,
T.
,
Tashtoush
,
G.
,
Saito
,
K.
, and
Cremers
,
C. J.
, 1999,
“The Measurement of Transient Two-Dimensional Profiles of Velocity and Fuel Concentration Over Liquids,”
Trans. ASME J. Heat Transfer
,
121
(
2
), pp.
413
420
.
18.
Ross
,
H. D.
, and
Miller
,
F. J.
, 1998,
“Flame Spread Across Liquid Pools With Very Low-Speed Opposed or Concurrent Airflow,”
Proc. 27th Int. Symp. on Combustion
,
Combustion Institute
,
Pittsburgh, PA
, pp.
2723
2729
.
19.
Takahashi
,
K.
,
Kodaira
,
Y.
,
Kudo
,
Y.
,
Ito
,
A.
, and
Saito
,
K.
, 2007,
“Effect of Oxygen on Flame Spread Over Liquids,”
Proc. Combust. Inst. 31, pp. 2625–2631.
20.
Torrance
,
K. E.
, 1971,
“Subsurface Flows Preceding Flame Spread Over a Liquid Fuel,”
Combust. Sci. Technol.
,
3
(
3
), pp.
133
143
.
21.
Torrance
,
K. E.
and
Mahajan
,
R. L.
, 1975,
“Surface Tension Flows Induced by a Moving Thermal Source,”
Combust. Sci. Technol.
,
10
(
3–4
), pp.
125
136
.
22.
Epstein
,
M.
, and
Burelbach
,
J. P.
, 1998,
“Effective Thermal Conductivity Model of Flame Spread Over a Shallow Subflash Liquid Fuel Layer,”
Trans. ASME J. Heat Transfer
,
120
(
3
), pp.
781
785
.
23.
Di Blasi
,
C.
,
Crescitelli
,
S.
,
Russo
,
G.
,
Cinque
,
G.
, 1991,
“Model of Pulsating Flame Spread Across Liquid Fuels,”
Proc. 23rd Int. Symp. on Combustion
(
Pittsburgh, PA: Combustion Institute
), pp.
1669
1675
.
24.
Di Blasi
,
C.
,
Crescitelli
,
S.
, and
Russo
,
G.
, 1991,
“Model of Oscillatory Phenomena of Flame Spread Along the Surface of Liquid Fuels,”
Comput. Methods Appl. Mech. Eng.
,
90
(
1–3
), pp.
643
657
.
25.
Schiller
,
D. N.
,
Ross
,
H. D.
, and
Sirignano
,
W. A.
, 1996,
“Computational Analysis of Flame Spread Across Alcohol Pools,”
Combust. Sci. Technol.
,
118
(
4-6
), pp.
203
255
.
26.
Schiller
,
D. N.
, and
Sirignano
,
W. A.
, 1997,
“Opposed-Flow Flame Spread Across n-Propanol Pools,”
Proc. 26th Int. Symp. on Combustion
(
Pittsburgh, PA: Combustion Institute
), pp.
1319
1325
.
27.
Kim
,
I.
, and
Sirignano
,
W. A.
, 2003,
“Computational Study of Opposed-Force-Flow Flame Spread Across Propanol Pools,”
Combust. Flame
,
132
(
4
), pp.
611
627
.
28.
Kim
,
I.
,
Schiller
,
D. N.
, and
Sirignano
,
W. A.
, 1998,
“Axisymmetric Flame Spread Across Propanol Pools in Normal and Zzero Gravities,”
Combust. Sci. Technol.
,
139
(
1
), pp.
249
275
.
29.
Ali
,
S. M.
,
Raghavan
,
V.
, and
Tiwari
,
S.
, 2010,
“A Study of Steady Laminar Diffusion Flame Over Methanol Pool Surface,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4696
4706
.
30.
Patankar
,
S. V.
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
, 1980.
You do not currently have access to this content.